Table of Contents

Executive Summary: Chapters 3 and 4 ... ii

Chapter 3

Lasting Scars of the COVID-19 Pandemic ... 131
Introduction ... 133
Spread of the pandemic ... 134
The economics of the pandemic: Shocks and spillovers 136
Initial impact: Economic activity, financial and commodity markets 137
 Global activity and trade .. 137
 Global financial conditions ... 138
 Commodity markets ... 138
Short-term growth impact .. 139
Vulnerabilities: Magnifying the short-term impact .. 141
Long-term growth effects .. 144
 Implications for potential output ... 145
 Implications for productivity ... 149
 Unique nature of the pandemic: Magnifying the long-term impact 150
Conclusion ... 158
Box 3.1 How do deep recessions affect potential output in EMDEs? 146
Box 3.2 How do disasters affect productivity? .. 151
Annex 3.1 The macroeconomic effects of pandemics and epidemics: A literature review 160
Annex 3.2 Bayesian vector autoregression model .. 170
Annex 3.3 EMDE vulnerability index ... 170
Annex 3.4 Long-term implications of recessions: Data and methodology 171
References .. 172

Chapter 4

Adding Fuel to the Fire: Cheap Oil in the Pandemic ... 181
Introduction ... 183
Drivers of the oil price plunge .. 185
Comparison with previous periods of disruptions ... 187
Implications of oil price plunges for the global economy 188
 Past oil price plunges ... 188
 The 2014-16 oil price plunge .. 190
 The 2020 oil price plunge .. 192
Box 4.1 Reforms after the 2014-16 oil price plunge ... 193
Conclusions ... 198
Annex 4.1 Methodology: Decomposition of oil price movements 199
Annex 4.2 Oil price plunges since 1970 ... 199
Annex 4.3 Methodology: Impact of oil price plunges on output 200
References .. 201
Executive Summary: Chapters 3 and 4

The coronavirus (COVID-19) pandemic is dealing a severe blow to the global economy. Measures needed to protect public health have undercut an already fragile global economy, causing deep recessions in advanced economies and emerging market and developing economies (EMDEs) alike. EMDEs that have weak health systems; those that rely heavily on global trade, tourism, or remittances from abroad; and those that depend on commodity exports will be particularly hard-hit. For example, energy-exporting emerging market and developing economies (EMDEs) face an unprecedented public health crisis, but their fiscal positions were already strained even before the recent collapse in oil revenues. In the long-term, the pandemic will leave lasting damage in EMDEs through lower investment; erosion of physical and human capital due to closure of businesses and loss of schooling and jobs; and a retreat from global trade and supply linkages. These effects will lower potential output—the output an economy can sustain at full employment and capacity—and labor productivity well into the future.

Lasting Scars of the COVID-19 Pandemic. The COVID-19 pandemic has struck a devastating blow to an already-fragile global economy. Lockdowns and other restrictions needed to address the public health crisis, together with spontaneous reductions in economic activity by many consumers and producers, constitute an unprecedented combination of adverse shocks that is causing deep recessions in many advanced economies and emerging market and developing economies (EMDEs). Those EMDEs that have weak health systems; those that rely heavily on global trade, tourism, or remittances from abroad; and those that depend on commodity exports will be particularly hard-hit. Beyond its short-term impact, deep recessions triggered by the pandemic are likely to leave lasting scars through multiple channels, including lower investment and innovation; erosion of the human capital of the unemployed; and a retreat from global trade and supply linkages. These effects may well lower potential growth and labor productivity in the longer term. Immediate policy measures should support health care systems and moderate the short-term impact of the pandemic on activity and employment. In addition, a comprehensive reform drive is needed to reduce the adverse impact of the pandemic on long-term growth prospects by improving governance and business environments, and expanding investment in education and public health.

Adding Fuel to the Fire: Cheap Oil in the Pandemic. The outbreak of COVID-19 and the wide-ranging measures needed to slow its advance have precipitated an unprecedented collapse in oil demand, a surge in oil inventories, and, in March, the steepest one-month decline in oil prices on record. In the context of the current restrictions on a broad swath of economic activity, low oil prices are unlikely to do much to buffer the effects of the pandemic, but they may provide some initial support for a recovery once these restrictions begin to be lifted. Like other countries, energy-exporting emerging market and developing economies (EMDEs) face an unprecedented public health crisis, but their fiscal positions were already strained even before the recent collapse in oil revenues. To help retain access to market-based financing for fiscal support programs, these EMDEs will need to make credible commitments to a sustainable medium-term fiscal position. For some of them, current low oil prices provide an opportunity to implement energy-pricing policies that yield efficiency and fiscal gains over the medium term.
CHAPTER 3

Lasting Scars of the COVID-19 Pandemic
The COVID-19 pandemic has struck a devastating blow to an already-fragile global economy. Lockdowns and other restrictions needed to address the public health crisis, together with spontaneous reductions in economic activity by many consumers and producers, constitute an unprecedented combination of adverse shocks that is causing deep recessions in many advanced economies and emerging market and developing economies (EMDEs). Those EMDEs that have weak health systems; those that rely heavily on global trade, tourism, or remittances from abroad; and those that depend on commodity exports will be particularly hard-hit. Beyond its short-term impact, deep recessions triggered by the pandemic are likely to leave lasting scars through multiple channels, including lower investment; erosion of the human capital of the unemployed; and a retreat from global trade and supply linkages. These effects may well lower potential growth and labor productivity in the longer term. Immediate policy measures should support health care systems and moderate the short-term impact of the pandemic on activity and employment. In addition, a comprehensive reform drive is needed to reduce the adverse impact of the pandemic on long-term growth prospects by improving governance and business environments, and expanding investment in education and public health.

Introduction

On March 11, the World Health Organization declared COVID-19 a pandemic—the first such declaration since the swine flu in 2009. As infections and deaths soared, governments around the world have taken unprecedented measures—including lockdowns and quarantines, school and business closures, and travel restrictions—to stem the spread of the pandemic. These measures, together with the spontaneous reactions of consumers, workers and businesses, have caused severe disruptions to activity in many sectors and a sharp global economic downturn. This has been accompanied by record capital outflows from emerging market and developing economies (EMDEs), a collapse in global trade, and a plunge in oil demand.

This chapter takes stock of the consequences of the pandemic for the global economy. Specifically, it addresses the following questions:

- How has the pandemic evolved?
- Through which channels does the pandemic affect the global economy?
- What is the short-term growth impact of the pandemic?
- What are the likely long-term growth implications of the pandemic?

Contributions. This chapter makes several contributions to a rapidly growing literature on the macroeconomic effects of the pandemic. First, while extensive analysis of the effects on advanced economies is widely available, work on the pandemic’s impact on EMDEs has thus far been very limited. This chapter provides the first comprehensive overview of the effects of the pandemic on EMDEs, highlighting the features that make these economies more vulnerable than advanced economies. Second, while much recent analysis has been devoted to the short-term implications, with forecasts for this year and next, this chapter also analyses the long-term macroeconomic effects of the pandemic. Third, the chapter presents, for the first time, a systematic synthesis of the copious literature developed over the past few decades on the macroeconomic effects of past disease outbreaks, including epidemics and pandemics.

Main findings. The chapter reports several novel findings.

- Evolution of the pandemic: While outbreaks in most advanced economies appear to be abating, the pandemic is rapidly spreading across EMDEs, including low-income countries (LICs), where health care systems have very limited capacity.
• **Severe short-term impact.** The pandemic, the widespread restrictions put in place to stem it, and the spontaneous reactions of many consumers and producers have already caused a deep global recession. Along with the public health crisis, EMDEs are facing tighter financing conditions, plunging oil and other commodity prices, sharp declines in remittances, and collapsing international trade.

• **Magnifying short-term weakness.** Many EMDEs entered this global recession less well-prepared, and with larger vulnerabilities, than when they were hit by the last global recession in 2009. EMDEs that are most vulnerable to the impact of the pandemic include those that have weak health systems, that rely heavily on global trade or tourism, that are vulnerable to financial disruptions, and that depend on oil and other commodity exports. The recession will prolong a decade of disappointing growth for EMDEs.

• **Persistent damage in the long run.** COVID-19 and the resulting recessions engulfing vast swaths of the developing world will leave lasting scars, eroding productivity and potential output for extended periods. The long-term damage will be particularly severe in economies that suffer financial crises, and in energy exporters because of plunging oil prices. In the average EMDE, over a five-year horizon, a recession combined with a financial crisis could lower potential output by almost 8 percent while, in the average EMDE energy exporter, a recession combined with an oil price plunge could lower potential output by 11 percent. The pandemic is expected to exacerbate the weakness in productivity growth and private investment that were features of the past decade.

• **Aggravating long-term challenges.** Recessions associated with the pandemic will likely have an even larger impact on long-term growth prospects because of pre-existing vulnerabilities, fading demographic dividends and structural bottlenecks, and permanent changes in behavior patterns, including consumption habits, and human capital formation. In most years during the past decade, EMDE growth fell short of its long-term average. This was reflected in repeated downgrades to long-term growth projections for EMDEs. The pandemic is expected to exacerbate the multi-decade trend slowdown in potential output growth and productivity growth.

• **Policies.** While the immediate priorities of policymakers are to address the health crisis and moderate the short-term economic losses, the likely long-term consequences of the pandemic highlight the need to forcefully undertake comprehensive reform programs to improve the fundamental drivers of economic growth.

Spread of the pandemic

Outbreak. As of May 22, more than 5.2 million cases of COVID-19 have been confirmed globally, alongside about 340,000 deaths attributed to the disease. Although the number of confirmed cases represents just 0.07 percent of the global population, cases continue to rise rapidly in most countries, including in EMDEs (Figure 3.1). Reported cases may be significantly lower than the number actually infected, given the sparseness of testing in some countries (Bendavid et al. 2020; Hortacsu, Liu, and Schwieg 2020; Barro, Ursúa, and Weng 2020).

Comparison with previous pandemics. The COVID-19 pandemic is the latest in a long series of epidemics and pandemics during the twentieth and twenty-first centuries. These have included Ebola in West Africa (2014-15), MERS in the Middle East (2012), swine flu (2009-10), SARS in East Asia (2002-03), Hong Kong flu (1968-69), Asian flu (1957-58) and Spanish flu (1918-19). Preliminary estimates suggest that COVID-19 may be considerably more infectious than many of these diseases, but not among the most deadly for those infected (Figure 3.1).

Influenza pandemics during the past century are estimated to have infected around one-quarter to one-half of the global population, although these estimates are highly uncertain (Annex 3.1; Van...
Kherkove et al. 2013). Previous coronavirus outbreaks, SARS and MERS, are estimated to have been significantly less contagious than COVID-19; they resulted in approximately 8,000 and 2,500 worldwide cases, respectively (Wilder-Smith, Chiew, and Lee 2020). In some historical episodes, prophylactic measures were taken to reduce the spread of the diseases, but on a much smaller scale than the measures implemented to counter COVID-19.1

Estimates of COVID-19 fatality rates are currently in flux, in part due to uncertainties over the true number of cases: they have ranged from 0.3 to 3.4 percent, with many of the higher estimates likely to have been biased upwards due to shortfalls in testing and the presence of unrecorded asymptomatic cases (Rajgor et al. 2020). This range is lower than estimates of fatalities resulting from the Spanish flu, which is estimated to have killed 50-100 million people during 1918-19, with case fatality rates of 3.5-20.0 percent (Johnson and Meuller 2002; Spreeuwenberg et al. 2018). The range of estimates of COVID-19 case fatality rates is closer to estimates for the Asian and Hong Kong flus. These pandemics are estimated to have had case fatality rates of approximately 0.01 percent (Li et al. 2008; Wang and Nguyen Thi 2013).

Mitigation measures. Restrictions and voluntary actions taken to stem the pandemic, including social distancing, have helped to lower the infection rate and thus to delay, and lower, the peak number of infections (Eichenbaum, Rebeloz, and Traband 2020; Ferguson et al. 2020). A key part of the policy response to COVID-19 has been the implementation of restrictions on people’s movements and economic activity of unprecedented scope and scale, beginning in China and extending to most countries (Figure 3.1). By end-April, nearly 150 countries had closed schools and mandated cancellation of events, and more than 80 had closed all workplaces. Travel restrictions were widespread.

1During the Spanish flu, for example, only 6 percent of cities in the United States declared general business closures, while 82 percent of U.S. states issued statewide stay-at-home orders in 2020 (Hatchett, Mecher, and Lipsitch 2007).
FIGURE 3.2 Health vulnerabilities in EMDEs

EMDEs, with generally younger populations, might be better placed to limit fatalities from COVID-19 than advanced economies. However, EMDEs also tend to have poorer clinical care, are less prepared to manage health crises, and their populations have less access to safe water and sanitation.

![Graphs and charts showing health vulnerabilities in EMDEs]

- **A. Age structure of population**
- **B. Health preparedness index**
- **C. Hospital beds**
- **D. Access to handwashing facilities**

Source: Food Security Information Network (2020); UN World Population Statistics; World Bank, World Development Indicators.

A. Age structure of population

B. Health preparedness index

C. Hospital beds

D. Access to handwashing facilities

EMDE-specific considerations. One feature of COVID-19 is that its lethality has been highest among the elderly (CDC 2020). This may help lower the case fatality rate in EMDEs, including LICs, which typically have younger populations. The proportion of the population older than 60 years is 11 percent, on average, in EMDEs, and only 5 percent in LICs (as well as in Sub-Saharan Africa more broadly), compared with 26 percent in advanced economies (Figure 3.2). However, EMDEs generally are less prepared for epidemics and have poorer public health and medical care systems than advanced economies, making the likelihood of recovery from COVID-19 lower should medical attention be needed. The median LIC, for instance, has less than one hospital bed per 1,000 people—compared to more than four in the median advanced economy. Finally, a higher proportion of the population of EMDEs live in informal, crowded housing conditions where access to clean water and sanitation services is limited, making the hygiene and physical distancing measures needed to contain the virus impractical or impossible (Corburn et al. 2020).

The economics of the pandemic: Shocks and spillovers

COVID-19 is the most adverse peacetime shock to the global economy in a century. Demand for goods and services has been severely curtailed, while at the same time supply has fallen sharply, as the number of people working has declined and the cost of doing business has risen. The shock has caused unprecedented disruptions to global trade, travel, and tourism; stress in global financial markets; and sharp declines in commodity prices.

Demand shortfalls. While the measures taken by governments, consumers, and firms to reduce social interaction have been critical to slow the spread of the virus, they have entailed significant disruptions to economic activity. A substantial share of private consumption requiring social interaction was lost in the first half of the year. Reduced consumption of goods and services has been one of the main drivers of lost output in a range of model-based estimates of the effects of pandemics (Annex 3.1). Investment has also been curtailed, not only by difficulties in maintaining production and construction but also by sharply weaker growth prospects, rising financing costs, eroding confidence, and increased uncertainty.

Supply disruptions. Air travel, schools and universities, restaurants, theaters, sports venues, and other facilities servicing masses of people have been largely closed down. Labor supply has declined, because of restrictions on movement and human interaction, illness of workers and family members, and school closures (Keogh-Brown et al. 2010; Kilbourne 2004). Workers able to work at home have in many countries been encouraged or instructed to do so, but fewer jobs can be
undertaken remotely in EMDEs than in advanced economies, partly because of more limited internet connectivity (ILO 2020). In some advanced economies, such restrictions as quarantine requirements on the entry of temporary foreign workers have been threatening agricultural production. Delays in input deliveries and limited access to financing, which have been exacerbated by the increased reliance on global value chains, have been causing operational challenges for firms. Over the longer term, workplace closures and quarantines can limit the diffusion of new technologies and knowledge, with lasting damage to productivity.

Global spillovers to EMDEs. These adverse demand and supply shocks have resulted in cross-border spillovers to EMDEs through multiple channels—real channels, including disruptions in global trade, supply chains, travel, and tourism; and financial channels, including sharp declines in remittance flows and large capital outflows amid a flight to safety in March. Commodity prices have been depressed by the sharp decline in demand and, with oil the most affected. These cross-border spillovers have been amplified by plunging confidence and rising uncertainty.

Initial impact: Economic activity, financial and commodity markets

Consistent with the gravity of the shocks and spillovers discussed above, recent data point to substantial disruptions in global activity and trade, a sharp tightening of financial conditions, and a severe decline in commodity prices (Chapter 1).

Global activity and trade

Data released in the first half of 2020 point to a severe global recession. The global composite PMI—a gauge of worldwide manufacturing and services activity—sank deep into contractionary territory to a record low of 26.5 in April (Figure 3.3). Along with the implied sharp drop in output, global trade has also contracted significantly. The new export orders PMI stood at 35.3 in April, deep in recessionary terrain. Its 11-point fall from March was the steepest on record and

FIGURE 3.3 Indicators of economic activity and international trade

The recent decline in global economic activity is one of the steepest and deepest on record. Purchasing managers’ indexes have fallen sharply in major economies and global sentiment has plunged. Global trade indicators, such as container shipping and the new export order component of PMI, experienced historically large falls in February. Air traffic volumes have fallen to a fraction of early 2020 values.

- **A. Composite PMIs**
- **B. Global Sentix Index**
- **C. Steepest one-month declines in container shipping since 2007**
- **D. Steepest one-month declines in new export orders since 2000**
- **E. Three steepest contractions in global tourism revenues since 2006**
- **F. Number of global commercial flights**

Source: flightradar.com; Haver Analytics; Institute of Shipping Economics and Logistics; J.P. Morgan; Sentix GMBH; World Bank.

A. PMI = Purchasing managers’ index. GFC = global financial crisis. PMI readings above (below) 50 indicate expansion (contraction) in economic activity. For World (GFC), t=0 at November 2008, the lowest value over the period 2007-2009. For all other data, t=0 at January 2020. Last observations are April 2020 for the Euro Area and March 2020 for China, the United States, and the world. Percent balance of sentiment on the current economic situation. Last observation is April 2020.

B. Figure shows percent balance of sentiment on the current economic situation. Last observation is May 2020.

C.-E. Consecutive months not shown.

D. Data only available from 2010. Figure only considers changes that are accompanied by declines below the threshold of 50, which indicates a contraction, and dates that are at least six months apart.

F. Figure shows a 7-day moving average. Commercial flights include commercial passenger flights, cargo flights, charter flights, and some business jet flights. Last observation is May 12, 2020.
considerably steeper than at the onset of the global financial crisis, during the Euro Area crisis (2010-13), or during the recent period of trade tensions (2018-19).

With international travel restricted and internal travel discouraged in most countries, global tourism and travel have been severely curtailed. So far this year, tourist arrivals declined by nearly 100 percent among reporting countries. Globally, the number of commercial flights is down about 70 percent since the beginning of the year.

Disruptions to production and international transport have increased the risk that critical inputs will be unavailable, potentially leading to cascading production shortfalls in global value chains. Manufacturers’ stocks of purchases have fallen, while suppliers’ delivery times have lengthened. Industries reliant on “just-in-time” inputs from global value chains and lean inventories have been particularly affected. In the automobile sector, a collapse in demand, combined with production and delivery challenges, has led to a precipitous plunge in sales worldwide.

Global financial conditions

Global equity markets fell sharply as the pandemic spread across the world. Within a week of reaching an all-time high in mid-February, the S&P 500 index in the United States experienced its fastest decline since October 1987, and stock markets in other major economies experienced declines of similar magnitude. The VIX volatility index more than quadrupled in March before settling at about double its February value in mid-May.

Flight to safety resulted in a sharp tightening of EMDE financing conditions (Chapter 1). Net portfolio outflows from EMDEs during each of the last three weeks of March were the three largest on record (Figure 3.4).

More recently, global risk sentiment improved in May amid large-scale liquidity injections by major central banks and a gradual relaxation of lockdown measures in some countries. Capital outflows from EMDEs have subsided and equity market valuations have retraced a share of their earlier losses. Nonetheless, financial conditions remain fragile for many EMDEs. Remittance inflows to EMDEs are expected to collapse in 2020 across EMDE regions (World Bank 2020b). Foreign aid flows may also shrink in 2020 as donors focus on supporting their own economies (UNCTAD 2020).

Commodity markets

As a result of the sharp decline of global commodity demand, the prices of most commodities have fallen steeply, particularly those used in the transport industry. Benchmark oil prices have been most affected, with the European Brent spot price plunging by 85 percent between late January—when the first human-to-human transmissions of the virus were announced—and its trough in late-April and the WTI price briefly trading at negative levels, before a gradual recovery in May. The decline in oil prices in March was the largest one-month price plunge on record (Figure 3.4; Chapter 4). The restrictions implemented to control the outbreak have resulted in sharp declines in travel and transport—which account for two-thirds of oil consumption—and in other energy-using economic activities. Oil demand is expected to fall by about 20 percent in the year to the second quarter of 2020 and an unprecedented decline of 9 percent is projected for the year as a whole.

Industrial metals prices declined by 24 percent between late January and late April—more than one-quarter as much as they did at the peak of the global financial crisis. With some exceptions, agricultural commodity prices have experienced only minor declines since January, reflecting their less direct relationship with economic activity (World Bank 2020a). While stocks-to-use ratios of most grains are at near-record highs, concerns about food security as a result of the pandemic have grown as countries have announced export bans (for example, Russia for wheat, Vietnam for rice) or “excess” buying (for example, Philippines for rice, Egypt and Saudi Arabia for wheat). Although most of these announcements have thus far not resulted in policy action, such action could result in localized food price spikes despite ample global supply (Voegele 2020). Disruptions to
supply chains have already affected the exports from some EMDEs of perishable products such as flowers, fruits, and vegetables.

Short-term growth impact

The global economy was confronted by the pandemic when it was on a weak footing. Since the 2009 global recession, growth in all country groups had fallen short of pre-crisis and long-term averages in most years. And, in 2019, the global economy delivered its weakest growth performance in the past decade.

The global economy is now experiencing a deep recession. Its severity and duration will depend on a wide range of factors, including the intensity and duration of restrictions to stem the pandemic, global spillovers from developments in major economies, the ability of policymakers to prevent financial market stress and protect firms and households hurt by the recession, the behavior of the virus, and the success of medical and other scientific advances to contain it.

Previous studies have analyzed the roles of some of these factors in driving short-term growth outcomes, through multiple channels, in the context of the Spanish flu or a hypothetical pandemic influenza. They have found initial GDP losses in the range of 1-8 percent (Annex 3.1). However, these studies do not take into account the effects of restrictions of the kind used to stem the current pandemic, which reflect their unprecedented nature. Taking them into account would be likely to increase estimates of short-term economic losses substantially (Eichenbaum, Rebelo, and Trabandt 2020).

Although subject to considerable uncertainty, studies that do take account of containment measures, as well as other channels for the pandemic’s economic impact, have found that EMDEs could suffer output losses of 3-8 percent in the short term, in line with simulations in previous studies of the effects of severe pandemics (IMF 2020; World Bank 2020c). Some studies report that containment measures significantly increase the economic costs of COVID-19. Restrictions on retail, travel, and other service industries could reduce output by 25 percent in OECD economies during the enforcement period (OECD 2020a).

2 See Barro, Ursúa, and Weng 2020; Burns, van der Mensbrugge, and Timmer 2006; McKibbin and Sidorenko 2006; and Verikios et al. 2011.

3 For example, in a stylized model for the United States, consumption falls by 22 percent under “optimal” containment measures, compared to just 7 percent if only the effect on labor supply owing to illness and mortality and consumer behavior is considered (Eichenbaum, Rebelo, and Trabandt 2020).
Spillovers

EMDEs face a perfect storm of both domestic shocks (health crises, restrictions to promote social distancing) and external shocks (plunging trade, collapsing tourism, capital outflows, falling commodity prices). Most immediately, the domestic shocks may well be more disruptive to economic activity than the external shocks. However, the external shocks are likely to also leave a damaging legacy beyond the control of EMDEs. The growth slowdown in the world’s major economies, uncertainties about economic policy, and financial market volatility are also expected to weigh heavily on short-term output and investment growth in EMDEs.

The uncertainties surrounding economic policies in the major advanced economies alone would already weigh on investment. Both in the United States and in the Euro Area, economic policy uncertainty is currently at record highs. In the past, such uncertainty significantly lowered EMDE investment. For example, a doubling of the U.S. or Euro Area economic policy uncertainty index (approximately the rise thus far in 2020) has been associated with 6 percentage point weaker investment growth in EMDEs and in EMDEs in Europe and Central Asia, respectively, over the following year (World Bank 2017a).

More broadly, the world’s three largest economies—the United States, the Euro Area, and China—are expected to experience sharp economic downturns. It is not expected that any of these three economies will return to prepandemic output levels in the short term, before the end of 2021. Since, together, these economies account for almost half of global GDP, this implies important adverse spillovers to EMDEs. A 1 percentage point growth slowdown in the United States or the Euro Area alone has been estimated to lower growth in EMDEs (excluding China) by 0.8 and 0.7 percentage point, respectively, in the following year (Annex 3.2; Figure 3.5). A similarly-sized growth slowdown in China alone could lower growth in other EMDEs by 0.7 percentage point in the following year and, because China accounts for a large part of global commodity demand, would set back growth in commodity-exporting EMDEs by considerably more (Huidrom et al. 2020; Ahmed et al. 2019).

Were growth in all three major economies to slow simultaneously by 1 percentage point, growth in EMDEs other than China would be 1.3 percentage points lower in the following year. The impact of a slowdown in all three major economies would likely be more pronounced in EMDEs that are more open to global trade, finance and commodity markets (Figure 3.5). For example, over the course of one year, growth would slow one-third more in commodity-exporting EMDEs than in commodity-importing ones if growth in the three largest economies slowed by 1 percentage point.

These estimates are based on a Bayesian vector autoregression (Annex 3.2).
Vulnerabilities: Magnifying the short-term impact

The impact on individual EMDEs will depend on country-specific factors, including vulnerabilities to external and domestic stresses and the ability to provide income support or policy stimulus. These vulnerabilities generally refer to conditions that increase the likelihood or severity of economic or financial stress when downside risks materialize.

Evolution of vulnerabilities

During the last global recession, in 2009, many EMDEs were able to implement large-scale countercyclical fiscal and monetary policies. They were in a position to stimulate activity because they could draw on sizable fiscal and monetary policy buffers accumulated during the pre-recession period of strong growth: government debt had fallen, current account and fiscal deficits had narrowed, and inflation had moderated.

These EMDEs had more resilient economies and, with more forceful stimulus, experienced milder growth slowdowns (Ruch 2019a).

Today, the average EMDE is less well placed to respond to a global downturn than before the 2009 global recession. EMDEs are more vulnerable to external shocks, in part because of larger debt, the trend weakening of demand for commodities, and slower underlying domestic growth. Softening external demand and trade disputes among major economies have also chipped away at an important engine of growth. At the same time, weaker fiscal positions make it more difficult for these economies to support activity with expansionary fiscal policy.

The evolution of vulnerabilities over time is captured in an index that aggregates 20 commonly used vulnerability indicators, grouped into five broader categories of economic vulnerabilities: financial, fiscal, trade, tourism, and poverty (Annex 3.3; Figure 3.6). Both for commodity-importing and commodity-exporting EMDEs, financial and fiscal vulnerabilities have grown since 2007, with particularly large deteriorations in fiscal vulnerabilities in commodity-importing EMDEs. In contrast, commodity-importing EMDEs have scaled back their openness, and corresponding vulnerability, to global trade and tourism since 2007. However, island states that rely heavily on tourism have seen a small increase in their exposure to this sector since 2007. With regard to poverty, commodity exporters continue to have sizable vulnerable population groups, with limited savings and recourse to finance and typically reliant on informal sector activity. While these vulnerable groups tend to be smaller in commodity-importing EMDEs, they have not shrunk there since 2007.5

Vulnerable EMDEs

The large capital outflows and steep increases in borrowing costs that have occurred since the beginning of the pandemic are hurting most severely those economies that have large financing requirements; falling commodity prices are hurting the economies that rely most heavily on resource sectors for export and fiscal revenues; and the collapse of foreign demand is hurting most the economies that are most open to trade and tourism. Countries with weak public health and medical care systems, high levels of informal economic activity, and vulnerabilities to food insecurity may face the most disruptive macroeconomic, social and poverty impacts.

Weak public health and medical care systems. EMDEs with weak public health infrastructure and limited capacity to treat the sick will tend to experience higher mortality rates and larger labor supply disruptions as a result of the pandemic. Low- and lower-middle-income economies tend to suffer particularly large economic losses from epidemics as a result of lower-quality health care and poorer population health (Fan, Jamison, and Summers 2018; McKibbin and Sidorenko 2006). COVID-19 mortality is greatly higher among populations with pre-existing chronic health problems. Many EMDEs have limited medical care capacity, which even before the outbreak suffered from lack of public funding and underinsured populations. The median LIC has

5In the average LIC, 48 percent of the population is poor and another 26 percent is near-poor, compared with 13 percent of the population in each category in other EMDEs (World Bank 2020e).
less than one hospital bed per 1,000 people, and the median EMDE just under two, compared with more than four per 1,000 people in the median advanced economy.

Economic structure. Economies that rely heavily on certain sectors are more vulnerable to the adverse macroeconomic effects of the pandemic (Figure 3.6).

- **Service sector dependence.** Demand contractions in sectors that rely heavily on social interactions, such as the travel, accommodation, and restaurant industries, were key drivers of output losses in the SARS and MERS epidemics (Joo et al. 2019; Keogh-Brown and Smith 2008). Many small EMDEs that are heavily reliant on tourism will see a sudden stop in a major source of income and foreign exchange earnings because of travel restrictions, while mitigation measures last.

- **Openness to trade.** EMDEs highly open to international trade or deeply integrated into global supply chains will be hit hard by the collapse in global trade. In several East Asian countries, for example, foreign inputs account for 50 percent or more of domestic exports, making them highly vulnerable to supply chain disruptions.

- **Dependence on commodity exports.** Almost two-thirds of EMDEs are commodity exporters. Because of the decline in prices and demand this year, these economies are experiencing severe contractionary forces. When the pandemic erupted, many commodity exporters already had more limited fiscal buffers to counter a commodity price shock than they had just before the 2009 global recession, as a result of the 2014-16 commodity price plunge (Stocker et al. 2018). Their fiscal balances turned from (cyclically adjusted) surpluses of almost 1 percent of GDP in 2007 to deficits of a similar magnitude in 2018 (Ruch 2019a). The revenue losses stemming from this year’s commodity price declines will further constrain commodity exporters’ ability to support their economies with income support or fiscal stimulus.
Reliance on labor-intensive sectors. Many LICs have large shares of labor-intensive production, which require working in close proximity, than higher-income countries. This type of production may suffer large disruptions as a result of social-distancing efforts or missed work due to illness (Smith and Keogh-Brown 2013).

Financial vulnerabilities. EMDEs with large financing needs (including wide current account or fiscal deficits) or large debt burdens are particularly vulnerable to a sharp increase in borrowing cost or more limited access to financing. Between 2007 and 2019, government debt in EMDEs increased by about 11 percentage points of GDP, on average, to reach 55 percent of GDP. Over this period, debt ratios rose in three-quarters of EMDEs and by more than 20 percentage points of GDP in one-third of them. In LICs, following a steep fall between 2000 and 2010, government debt increased to 67 percent of GDP in 2018 (Kose et al. 2020). In EMDEs, fiscal surpluses of more than 2 percent of GDP in 2007, on average, had turned into deficits of 1 percent of GDP by 2019; near-balanced current accounts in 2007 had become sizable deficits (Figure 3.7).

Financial vulnerabilities not only constrain EMDEs' ability to support their economies with monetary and fiscal stimulus; they can also reduce the effectiveness of fiscal stimulus (Huidrom et al. 2019). In addition, the health of public sector balance sheets is an important determinant of the costs of credit for banks and non-financial corporations since they are linked to the sovereign credit rating. In times of stress, sovereign-bank financial linkages can amplify shocks (World Bank 2018). Banks hold sovereign debt to manage their balance sheets and to fulfill regulatory requirements. Losses on these holdings can disrupt financial intermediation. Over the past decade, bank exposures to sovereign debt have increased in EMDEs relative to both GDP and total bank assets (World Bank 2018).

Informality. The informal sector, on average, accounts for about a third of official GDP and about 70 percent of total employment in EMDEs (World Bank 2019b; Figure 3.8). Pervasive informality is associated with widespread poverty, lack of access to sanitation, lack of access to financial and medical resources, and poor social safety nets—all factors likely to amplify the health and economic impacts of the pandemic.

Poverty. In EMDEs with large numbers of extremely poor or near-poors, populations may not be able to comply with restrictions on economic activity unless the restrictions are suitably designed (Chang and Velasco 2020). The poorest often live in crowded conditions that make social distancing extremely challenging or impossible (Sánchez-Páramo 2020). For example, 70 percent of city dwellers in SSA live in crowded slums where handwashing facilities are sparse and communal and where sanitation is weak (World Bank
Among the most vulnerable groups are women, which tend to be overrepresented in the informal sector and in services jobs that cannot easily move online (Freund and Hamel 2020). Women employed in the tourism industry and as small-scale farmers are particularly hard-hit (Freund 2020, Freund and Hamel 2020).

Food insecurity. Among the poor, income losses, lack of savings, lack of access to finance, and breakdowns in local agricultural supply chains may all threaten food insecurity. Although global food markets were well supplied at the start of the pandemic, availability of some foods has recently been strained by restrictions on the movement of workers and reductions in air freight capacity (FAO et al. 2020; Pangestu 2020). Restrictions on food exports could further amplify food insecurity (Figure 3.8). In parts of Africa, this could be compounded by the locust infestation currently underway.

Globally, acute hunger could double in 2020, to affect more than 260 million people (WFP 2020). In addition to being a serious health risk, insufficient food supply has the potential to trigger social unrest and conflict, with adverse economic outcomes (Hendrix and Brinkman 2013; Koren and Bagozzi 2016). Food insecurity could also generate significant migration pressure (FAO et al. 2018; Sadiddin et al. 2019).

Long-term growth effects

Prior to the pandemic, the global economy already faced prospects of slower long-term growth, with long-term (ten-year-ahead) growth forecasts having been repeatedly revised down for all country groups since the global recession of 2009. This, in part, reflected a recognition of slowing potential growth in EMDEs, particularly China, over the past decade and reaching into the next decade (Kilic Celik, Kose, and Ohnsorge 2020; World Bank 2018).

In addition to its devastating short-term health and macroeconomic effects, the pandemic may have significant long-term effects. The substantial economic dislocations, deep output contractions across large numbers of countries, and heightened and wide-ranging uncertainties that have arisen...
from the pandemic may dampen human and physical capital accumulation. Supply chains and working arrangements in many industries may go through costly reconfigurations. There may also be long-lasting shifts in consumer behavior, including in the composition of spending. Households may also opt for increased precautionary saving in view of heightened uncertainty about employment and income prospects. Both consumer spending and business investment may suffer from sustained declines in confidence. Depressed capital spending would be particularly damaging to long-term growth prospects in EMDEs, coming on the heels of several years of weak investment (World Bank 2019a).

There is little research on the medium- or long-term effects of disease outbreaks on output (McKibbin and Fernando 2020). However, it is well-known that other major adverse economic shocks, such as financial or currency crises, have been associated with persistently negative effects on growth. This suggests that the current pandemic may also leave lasting scars on the global economy by lowering potential output and productivity.

Implications for potential output

Sources of long-term effects. Severe recessions have been associated with highly persistent losses in output in both advanced economies and EMDEs (Box 3.1).6 These effects arise from various interlinked factors. Low levels of capacity utilization discourage investment and lead to a legacy of obsolete capacity; expectations of weak growth also discourage investment and become self-fulfilling; protracted unemployment causes losses of human capital and reduces job-search activity. All these forces will tend to lower long-run as well as short-run labor productivity.

The current pandemic may be particularly damaging to long-term growth prospects because the disruptions caused by the measures to contain the pandemic call into question the viability of global supply chains that have been a foundation of growth over the past two decades. Productive firms may be disproportionally affected by the disruptions because they are more likely to export, are embedded in complex value chains and employ workers with firm-specific skills (Didier et al. 2020).

The current global recession has occurred with a severity that is unmatched in eight decades and has been accompanied by sharply tighter financing conditions and a record oil price collapse. These two key features of the current global recession—the higher likelihood of financial crisis and a severe terms-of-trade shock to energy exporters—increase the risk of lasting damage to potential output in many EMDEs.

- Recessions and financial crises. The lasting damage of recessions has been more severe when they have been accompanied by financial crises.8 A range of channels drive this outcome. Financial crises increase liquidity demand and tighten credit conditions more broadly—including for productivity-enhancing technologies embodied in new investment and for research and development spending; they curtail access to bank lending for creative firms; they leave a legacy of obsolete capacity; they trigger self-fulfilling expectations of weak growth; and they cause long-term unemployment that leads to human capital loss and reduced job-search activity.9

7 For technology absorption, see Anxoategui et al. (2016); for the legacy of obsolete capacity, see Nguyen and Qian (2014); for self-fulfilling expectations of weak growth prospects, see Caballero and Simsek (2017); and for human capital loss and reduced job search activity among the long-term unemployed, see Ball (2009); Blanchard and Summers (1987); Hall (2014); Lindbeck (1995); Lockwood (1991); and Reifschneider, Wascher, and Wilcox (2015).

8 Claessens, Rose, and Terrones (2009 and 2012); Furceri and Mourougane (2012); Mourougane (2017); Queralto (2019); and Reinhart and Rogoff (2014) estimate lasting losses from financial crises and Ball (2014) and Hall (2014) the lasting losses from the global financial crisis. Candelon, Carare, and Miao (2016) and Cerra and Saxena (2008) find longer-lasting losses from banking, debt, or equity market crises than from currency, inflation, or political crises.

9 For loss of access to bank lending for creative firms, see Queralto (2019); for lower labor productivity after financial crises, see Oulton and Sebastia-Barriel (2017); and for lower productivity-enhancing investment, see De Ridder (2016) or, specifically, for R&D spending, see Fatás (2000).
A deep global recession is underway, of a severity that is unmatched in decades. The world economy is expected to start recovering once the pandemic recedes and restrictions on economic activity are lifted. However, historically, the setbacks to investment and potential output (the level of output an economy can sustain at full capacity and employment) caused by deep recessions have been long-lasting. Beyond the immediate health crisis, two key features of the current global recession increase the risk of lasting damage to potential output in EMDEs. First, even if financial markets appear to have stabilized for now, tight financial conditions and record-high debt increase the probability of prolonged balance sheet repair or even outright financial crises. Second, oil prices have suffered a record collapse. Today’s average EMDE is more vulnerable to financial market stress than before the 2007-09 global financial crisis, with higher government and corporate debt, and wider fiscal deficits. And energy exporters remain as dependent on energy exports as before the last oil price collapse in 2014 (Figure 3.1.1).

Against this backdrop, this box explores the likely impact of COVID-19 on potential output by addressing the question: How do recessions, crises and oil price plunges interact to generate long-term implications for potential growth?

The box builds on earlier work that found that deep recessions lower potential output levels four to five years to have stabilized for now, tight financial conditions and record-high debt increase the probability of prolonged balance sheet repair or even outright financial crises. Second, oil prices have suffered a record collapse. Today’s average EMDE is more vulnerable to financial market stress than before the 2007-09 global financial crisis, with higher government and corporate debt, and wider fiscal deficits. And energy exporters remain as dependent on energy exports as before the last oil price collapse in 2014 (Figure 3.1.1).

Against this backdrop, this box explores the likely impact of COVID-19 on potential output by addressing the question: How do recessions, crises and oil price plunges interact to generate long-term implications for potential growth?

The box builds on earlier work that found that deep recessions lower potential output levels four to five years
After the event (World Bank 2018). It extends this work by analyzing the extent to which the long-term impact of recessions differs when they are accompanied by financial crises or oil price plunges.

Impact of recessions with crises and oil price plunges

The COVID-19 pandemic presents a public health crisis. The direct impact of sickness and mortality, and the associated restrictions to stem the pandemic, alone would constitute a major global economic shock. In addition, many EMDEs are facing exceptionally severe economic pressures from financial and oil markets. The 2020 global recession will be extraordinarily deep and prolonged (Chapter 1). To shed light on its implications over a longer time horizon, this section presents evidence on the long-term output cost of severe recessions and how they interact with financial crises and oil price plunges.

Data and methodology. The medium-term impact of recessions on potential output is estimated using a local projections model (Annex 3.4). Recessions are defined as years of negative output growth (see Huidrom, Kose, and Ohnsorge 2016). Financial crises include banking, currency, or debt crises defined as in Laeven and Valencia (2018). Financial crises that did accompany recessions (about 24 percent of financial crises in the sample) were associated with output contractions of more than 5 percent.

Short-term output losses. In the average year of recession, output declined by more than 3 percent in advanced economies and more than 5 percent in EMDEs. On their own, neither financial crises nor oil price plunges were associated with recessions (Figure 3.1.2). However, when they did accompany recessions, financial crises or oil price plunges were associated with steep output losses.

- **Financial crises.** On average, economies still grew by almost 1 percent in the year of financial crisis and the following year. More than one-half of these events were currency crises, which tend to be associated with milder output losses (Cerra and Saxena 2008; Candelon, Carare, and Miao 2016). Financial crises that did accompany recessions (about 24 percent of financial crises in the sample) were associated with output contractions of more than 5 percent.

- **Oil price plunges.** Oil price plunges were, on average, accompanied by more than 3 percent growth in the same year. Energy-exporting EMDEs historically have had large fiscal buffers, which have allowed them to provide substantial policy support to their domestic economies: their growth averaged more than 2

Figure 3.1.2 Growth: Recessions, crises, and oil price plunges

In EMDEs, three-quarters of recessions have been accompanied by financial crises or oil price plunges. These tend to be associated with particularly steep output contractions.

- **A. Frequency of recessions**
- **B. Average EMDE growth during recessions and financial crises**
- **C. Average growth during oil price plunges**

Note: Based on a sample of 32 advanced economies and 91 emerging market and developing economies (EMDEs) with available data for potential growth for 1982-2018 (Annex 3.4). Recessions are years with negative growth; in the case of consecutive years with negative growth, the year of output trough is selected. Financial crises are banking, currency, or debt crises, as defined as in Laeven and Valencia (2018). Oil price plunges occurred in 1986, 1990-91, 1998, 2001, 2008, and 2014-15.

B. Unweighted average for EMDE regression sample. Difference between the bars are illustrative and not statistically significant because of wide heterogeneity.

Click here to download data and charts.
percent in the year of the plunge (Stocker et al. 2018). In cases when oil price plunges were accompanied by recessions (17 percent of recessions in energy-exporting EMDEs), the output contractions in energy exporters were especially deep (about 10 percent).

Medium-term potential output losses. In line with earlier findings, recessions left a legacy of lower potential output for four to five years after their onset. Five years after the average recession, potential output were about 6 percent below baseline in EMDEs (Figure 3.1.3).

Financial crises and oil price plunges alone—including those which were not associated with outright recessions—also tended to be associated with lower potential output over the medium term. Five years after a financial crisis, potential output in EMDEs was about 4 percent below the baseline. Five years after an oil price plunge, potential output in energy-exporting EMDEs was about 8 percent below the baseline.

Recessions that were accompanied by financial crises caused larger long-term potential output losses in EMDEs than recessions without financial crises. Five years after a recession-cum-crisis, potential output in EMDEs remained almost 8 percent below baseline—more than the 6 percent potential output loss following the average recession.
In energy-exporting EMDEs, oil price plunges that were accompanied by recessions were associated with particularly severe and lasting potential output losses. On average five years after such plunges-cum-recessions, potential output in energy exporting EMDEs remained 11 percent below the baseline.

Effect of policy regimes. Long-term potential output losses are somewhat more modest for countries that enter the recession with fewer vulnerabilities. For example, estimated potential output losses five years after a combined recession and financial crisis were lower in countries that entered the recession with external debt in the bottom decile of the sample than in those that entered it in the top decile of the sample. Similarly, EMDEs with inflation-targeting monetary policy regimes suffered about one-half the potential output losses in recessions and financial crises than countries with other monetary policy regimes. EMDEs that entered financial crises with narrower current account deficits witnessed lower potential output losses after five years.

Conclusions

The immediate policy priority is to address the COVID-19 health crisis. Policies also need to take into account the lasting economic damage from the deep recession triggered by the health crisis. Evidence presented in this box points to two broad sets of priorities to improve growth prospects.

First, since financial crises cause longer-lasting and more severe output losses, EMDEs need to avoid sliding into a financial crisis. Macropurtual policies as well as monetary and fiscal policy support and international assistance are critical to ensure the maintenance of confidence, the stability of lending institutions, and normal flows of credit to households and firms.

Second, oil price plunges cause particularly lasting output losses in energy exporters when they are accompanied by outright output contractions—as will be the case for energy-exporting EMDEs in 2020 (Chapter 1). Once the current crisis subsides, efforts to diversify these economies can help reduce their vulnerability to oil price shocks (Chapter 4). Such measures include ensuring appropriate trade policies that promote diverse exports, infrastructure investment to enable private sector competition, competition regulation to avoid market concentration, and support for innovation through research and development (Ruch 2019b). They also include reforms to establish institutional frameworks for sustainable fiscal and monetary policies. These would help to buffer external shocks and macroeconomic volatility in the short run, and to provide a growth-friendly environment for the long run.

- Oil price plunges and recessions. Steep drops in the price of oil have a direct negative impact in oil-exporting economies that magnifies the depth and duration of a recession. They also weigh on global growth in the short-term (Chapter 4). Once the global economic recovery gains momentum, however, the overall effect of lower oil prices, while they are sustained, on global growth may be positive, through increased real incomes, lower inflation and interest rates, and the expansion of energy-intensive activities.

Estimates of potential output impacts. Empirically, recessions were associated with large and lasting potential output losses in EMDEs, especially when accompanied by financial crises. Five years after a recession, EMDE potential output was about 6 percent below baseline and five years after recessions with financial crises, EMDE potential output was about 8 percent below baseline (Box 3.1; Figure 3.9). For energy-exporting EMDEs, recessions accompanied by oil price plunges were particularly damaging: on average, five years after such episodes, potential output in energy exporters was about 11 percent below baseline. These potential output losses were somewhat smaller when economies entered recessions and financial crises with lesser vulnerabilities (e.g., lower external debt, narrower current account deficits) or with more resilient monetary frameworks (e.g., inflation targeting).

Implications for productivity

Productivity growth is the primary source of lasting growth in per capita incomes and living standards, which in turn is the main driver of
Poverty reduction. The current pandemic is the latest in a string of epidemics and pandemics in the twentieth and twenty-first century (Box 3.2). Pandemics are one of the rarest forms of natural disasters, which also include climate disasters or extreme weather events (such as storms, floods, droughts, and periods of extreme temperature) and geological disasters (such as volcanic eruptions). Evidence from different types of more common natural disasters suggests lasting productivity losses.

Since 2000, there have been several large-scale disease outbreaks, including SARS (2002-03), swine flu (2009-10), MERS (2012-13), Ebola (2014-15), and Zika (2016). These affected over 115 EMDEs and advanced economies. Climate disasters occurred twice as often as all other types of natural disasters combined, accounting for around 70 percent of all natural disasters in 2000-19, but on average they lasted only half as long as epidemics.

Estimates of productivity impacts. Major epidemics have had persistent adverse effects on productivity in the afflicted countries, although without the global reach of the COVID-19 pandemic (Box 3.2). For example, major epidemics that have occurred since 2000—such as SARS, MERS, Ebola and Zika—are estimated to have been associated with 6 percent lower labor productivity in the affected countries after five years (Figure 3.10). This largely reflects a significant erosion in capital deepening: investment was, on average, about 11 percent lower five years after these events, amid heightened risk aversion and uncertainty. The greater global spread and death toll of COVID-19 than these previous epidemics suggest it could have even more costly long-term consequences for productivity.

Unique nature of the pandemic: Magnifying the long-term impact

The deep recessions associated with the current pandemic are likely to leave more permanent economic scars than typical recessions because of lasting effects of the pandemic and related mitigation policies on the behavior of households and firms—effects that will be exacerbated in many countries by pre-existing vulnerabilities (Figure 3.11). The key longer-term dangers to growth include the following:

- **Weak confidence.** Persistently weak confidence could result in a buildup of precautionary savings by households and also more cautious spending by firms, markedly reducing aggregate demand and supply (Bhandari, Borovicka, and Ho 2019; Ilut and Schneider 2014).

- **Changing consumption patterns.** There could be long-lasting changes in consumption patterns motivated by the aim of lowering infection risks (Smith et al. 2014).
Introduction

Prior to the emergence of COVID-19, there were already concerns about the prospects for long-term productivity growth in emerging market and developing economies (EMDEs) and the achievement of development goals, especially the reduction of poverty. COVID-19 has put these goals in even greater jeopardy (World Bank 2020e). In less than half a year since its start, COVID-19 already ranks as a major disaster (Figure 3.2.1). Since pandemics are rare events, this box sheds light on the effects of COVID-19 on labor productivity by examining severe disasters (including epidemics, climate disasters, and wars) since 1960.

Natural disasters (such as biological, climate, and geophysical events), and wars have caused significant economic damage. Past severe disasters (more than 100 deaths per million people) are relevant for gauging the likely effects of COVID-19 on labor productivity and understanding the channels through which disasters may affect the economy. The box examines three questions:

- What are the main channels through which severe disasters affect productivity?
- What are the frequency and extent of severe disasters?
- What are the likely implications of severe disasters for productivity?

Channels through which severe disasters affect productivity

Severe disasters, such as pandemics, epidemics, severe climate disasters, and wars, can affect productivity and long-term growth through supply- and demand-side channels.

Disasters can impact supply through:

- **Depleted labor force and human capital.** Major disasters can disrupt the functioning of labor markets by making it difficult for workers to get to their places of employment or (in the case of infectious diseases) work in close physical proximity with each other, or by causing widespread sickness, injuries and fatalities that directly reduce the labor supply (Field 2019; Ksoll, Macchiavello, and Morjaria 2010; and Mueller 2013). These disruptions undermine the productivity of those remaining in the workforce owing to the loss of complementary skills. Unexpected adverse events that affect large geographic areas have been shown to have lasting consequences on human capital formation (health, education and nutrition outcomes) regardless of the income group.\(^1\)

- **Destruction and misallocation of physical capital.** Severe climate and geophysical disasters tend to reduce and degrade the capital stock, and can lead to a misallocation of capital which can weigh on productivity (Hallegatte and Vogt-Schilb 2019). Disasters more generally can hold back growth-enhancing investment—including by damaging the outlook for activity and profitability, increasing uncertainty, triggering capital flight, and tightening credit conditions (Collier 1999; Hutchinson and Margo 2006). By magnifying economic uncertainty, disasters can also cause a misallocation of investment (Claessens et al. 1997; Claessens and Kose 2017, 2018).

- **Disruption of supply chains and innovation.** Major disasters can damage global value chains.\(^2\) They also

\(^1\) Natural disasters include climate (floods, cyclones), biological (epidemics, insect infestation), and geophysical disasters (earthquakes, volcanoes), and follow EM-DAT definitions.

\(^2\) See Acevedo et al. (2018), IMF (2017), and Thomas and López (2015). Biological epidemics can also disproportionately affect low-skilled workers and raise inequality (Furceri et al. 2020).

\(^3\) See Collier (1999), Reynaerts and Vanschoonbeek (2018), and Rodrik (1999).
undermine the incentives to invest in R&D and new technologies, including by triggering wide-scale institutional dysfunction, weakening property rights, and increasing costs of doing business. Capital outflows tend to be associated with drops in inward foreign direct investment, which can be an important source of technology transfer. Containment efforts during biological events—such as workplace closures and quarantines—can further limit the diffusion of technologies.

Disasters can also impact demand through:

- **Lower business investment.** Short-term projections of demand and economic activity tend to be scaled back and business uncertainty to increase sharply following

BOX 3.2 How do disasters affect productivity? (continued)

FIGURE 3.2.1 Severity, frequency, and duration of pandemics, epidemics, and climate disasters

In less than half a year, COVID-19 already ranks as a major disaster. In the most severely affected countries, its impact may be as large as those from a severe climate disaster, which typically results in mortality rates of over 100 per million of the population. Climate disasters were the most frequent type of natural disaster in 1960-2018, accounting for nearly 70 percent of all disasters. Epidemics and wars are much rarer although their duration is longer. About 20 percent of biological disasters that have affected EMDEs and LICs have been severe and resulted in death ratios of over 100 per million (0.01 percent) of the population.

Source: Centers for Disease Control and Prevention; Correlates of War; EM-DAT, Johns Hopkins University; OurWorldInData.org; Peace Research Institute Oslo; United Nations; World Bank; World Health Organization.

A.-C. Cumulative deaths per million habitants worldwide. Last observation of death toll for COVID-19 is May 14, 2020. Severe climate disasters are defined as events that led to at least 100 deaths per million population.

C. Blue bars indicate the medians of mortality rates across affected countries. The bottom (top) of the yellow line represents the 1st (3rd) quintile. Red marker indicates 100 deaths per million habitants.

D.-F. Natural disasters include climate (floods, cyclones), biological (epidemics, insect infestation), and geophysical (earthquakes, volcanoes) disasters, and follow EM-DAT definitions. Wars are identified using the World Bank’s Correlates of War database. The sample includes 170 economies: 35 advanced economies and 135 EMDEs, of which 27 are low-income countries.

E. Biological disasters include epidemics.

Click here to download data and charts.
major disasters, while financial conditions tighten, including in response to increased risk aversion. These typically cause a sharp drop in investment demand. A more prolonged disaster, even at the same magnitude, results in higher uncertainty. This causes firms to delay or deter investments and thereby compounding the negative economic effects of disasters (Bloom 2014; Baker, Bloom, and Terry 2019; and Bloom et al. 2018). The more severe the disaster, the larger the uncertainty (Ludvigson, Ma, and Ng 2020). Model-based estimates by Baker et al. (2020) suggest that increased uncertainty accounts for half of the output loss in the United States in early 2020.

- **Weaker consumer demand.** Job losses, reduced income, increased cost of debt service, higher uncertainty, the forced closure of marketing outlets, and, in the case of diseases, fear of infection, all tend to cause consumers to reduce their spending on goods and services and to increase saving rates. Furthermore, effects on consumer behavior could be long-lasting—for example, a pandemic could cause households to reduce their demand, over an extended period, for travel, tourism, eating out, entertainment, and other activities involving human interaction, and to increase their saving in the absence of close substitutes.

Frequency and short-term effects of disasters

This section briefly reviews the experience of severe disasters over the past 60 years for insights into the main channels through which they impact productivity. Pandemics, epidemics and wars are rare events although they last longer than other types of disasters. Biological disasters and geophysical disasters are more common. Climate disasters (such as storms, floods, droughts, and periods of extreme temperature) occur more often but typically last for less than six months. All these events are associated with weaker productivity over long time spans.

Pandemics. The Spanish flu (1918-19) has an unusually high death toll and mortality rate, killing between 20-100 million people globally. Other, more recent, pandemics had far lower mortality rates. They included the Hong Kong flu (1968-69) and the Asian flu (1957-58), with nearly 300 and 400 deaths per million, respectively. This was followed by swine flu (2009-10), with 11 deaths per million globally (Figure 3.2.1). COVID-19 is the most severe pandemic since the Hong Kong flu, despite the unprecedented mitigation efforts that have been implemented.

Epidemics since the 2000s. During 2000-18, the world experienced SARS (2002-03), MERS (2012), Ebola (2014-15), and Zika (2015-16). The increased frequency of epidemics increases the likelihood that pandemics will break out. Since 1960, there have been more than 250 episodes of biological disasters with losses of life of over 10 per million population in the countries affected. LICs have been disproportionately affected by these types of disasters, whereas advanced economies were not affected. The frequency of biological episodes has been increasing over time, but they have mostly been contained in size and severity.

Frequent climate disasters. Climate disasters accounted for around 70 percent of natural disasters during 1960-2018, occurring twice as often as other types of natural disasters combined (Figure 3.2.1). However, the frequency of severe climate disasters—defined as causing losses of life exceeding 100 people per million—has stabilized since 2000, perhaps reflecting better mitigation policies in some countries as they have confronted climate change (Figure 3.2.2). Furthermore, climate disasters tend to be short-lived compared to epidemics which on average last twice as long.

Wars. Apart from their direct toll on human life and welfare, wars also have major adverse effects on output and productivity (Abadie and Gardeazabal 2003; Cerra and Saxena 2008). The frequency of wars has dropped over 2000-18, although a typical LIC was twice as likely to experience a conflict as a typical EMDE. The destruction, disruption, and diversion effects of wars can cause sharp reductions in the labor force and physical capital, and also dampen productive investment and innovation.

Damaging severe disasters. Compared to unaffected countries, severe biological disasters are associated with 9 percent lower median labor productivity and 8 percent lower total factor productivity (TFP) three years after the shock (Figure 3.2.2). Severe natural disasters (including climate and biological disasters) also correlate with weaker labor productivity and TFP compared to countries not suffering such disasters. In EMDEs, three years into a
severe natural disaster episode median labor productivity was around 8 percent lower in the countries affected, and TFP was 7 percent lower than in countries unaffected whereas investment remained virtually unchanged, which could reflect large-scale reconstruction investment offsetting other negative effects.

Long-term effects of severe disasters

To help draw inferences on the possible effects of COVID-19, this section examines the extent different types of disasters such as epidemics, climate disasters, and wars have lasting negative effects on labor productivity. Epidemics are particularly damaging to productivity, lowering it by between 6 percent and 15 percent (if accompanied with recessions) after five years. Climate disasters weaken productivity by between 4 to 8 percent. Wars also affect productivity for a sustained period.

Methodology. The local projection method (LPM) is used to provide a reduced-form estimate of the response of labor productivity to adverse events over various horizons, and to identify key transmission channels through output, investment, and TFP (Jordà, 2005; Jordà, Schularick, and Taylor, 2013).

Adverse effects of epidemics. Results suggest that four epidemics since 2000 (SARS, MERS, Ebola, and Zika)
had significant and persistent negative effects on productivity (swine flu is excluded since it coincided with the global financial crisis). These estimates indicate that epidemics led, on average, to a contemporaneous loss of productivity equal to about 1 percent (Figure 3.2.3). After five years, such disasters lowered labor productivity by a

6 Jordà, Singh, and Taylor (2020) consider major pandemics and find long lasting effects on output. Barro and Ursúa (2008) report that the macroeconomic impact of the Great Influenza Pandemic of 1918 is substantial. Sustained low levels of demand, and excess capacity during disasters, including pandemics, can have persistent effects on productivity.
cumulative amount of about 6 percent. Over the same horizon, investment declined by nearly 11 percent reflecting heightened uncertainty and risk aversion.

Losses associated with severe climate disasters. In EMDEs, severe disasters (greater than 100 deaths per million) have resulted in considerable losses in output, labor productivity, and total factor productivity. The LPM estimates for climate disasters indicate that labor productivity was lower by 8 percent after five years (Figure 3.2.3, Fomby, Ikeda, and Loayza; 2013). The estimates show that lower labor productivity is mainly accounted for by weaker total factor productivity rather than reduced investment. Possibly because after a severe disaster, firms delay or cancel investment in R&D, which impedes the creation, transfer, and adoption of new technologies and hinders global value chains. On the other hand, reconstruction spending offsets to some extent the negative impact on other capital spending.

The literature finds severe disasters have disproportionately larger economic impacts due to non-linear effects on labor force participation and human capital, particularly amongst younger workers (Cavallo et al. 2013; Hallegatte and Przyluski 2010; Loayza et al. 2012). Furthermore, the cumulative loss of productivity tends to be larger if the disaster lasts for a more extended period—as is the case with biological disasters—or if reconstruction efforts are delayed (Cerra and Saxena 2008; Sawada 2007). Twelve out of around 360 recessions (excluding the 2009 global financial crisis) were associated with severe disasters; 38 were associated with epidemics. In the case of the four major epidemics, the effects associated with recessions are significantly larger on productivity (Figure 3.2.3).

Scarring effects of wars. This is due to the destruction of human and physical capital and reduced total factor productivity. In EMDEs, wars (including internal and external wars) have been especially damaging as they lowered labor productivity by about 4.5 percent after five years (Figure 3.2.4).

Note: Wars include intra-state and external (extra-state and inter-state) wars (COW and PRIO). Financial crisis episodes include banking crisis, currency crisis, and sovereign debt crisis (Laeven and Valencia 2018). Natural disasters include climate, biological, and geophysical disasters (EM-DAT). EMDEs=emerging market and developing economies (including low-income countries). The sample includes 170 economies: 35 advanced economies and 135 EMDEs, of which 27 are low-income countries.

A.B. Blue bars indicate the average impact of the event for each group and orange lines represent the 90 percent significance range.

C. The range of estimates is from the literature.

Click here to download data and charts.

Footnotes:
7 The pace of reconstruction may be slowed by financial, physical, and transaction constraints (Hallegatte and Rentschler 2018).
8 Severe disasters can widen inequalities and exacerbate political tensions in affected countries. Besley and Persson (2011) estimated, for a sample of 97 countries in the period 1950-2005, that severe natural disasters increased the probability of wars by about 4 percentage points. Biological epidemics can also disproportionally affect low-skilled workers and raise inequality (Furceri et al. 2020).
Conclusions

The COVID-19 pandemic raises questions about its effects on productivity. Pandemics and epidemics are rare events in comparison to climate disasters and wars, but they have had adverse and persistent effects on productivity. Adverse impacts on productivity increase more than proportionately with the severity and duration of these types of disasters. Severe disasters were lowered labor productivity by 6 percent over the subsequent five years.

The COVID-19 pandemic may have a significantly worse impact on productivity than most previous disasters for three reasons:

- **Global reach.** The COVID-19 pandemic appears to have considerably broader reach—in terms of numbers of both countries and people affected—than other disasters since 1960 (Hassan et al. 2020). The increased integration of the global economy, through trade and financial linkages will amplify the adverse impact of COVID-19.

- **Contagion prevention and physical distancing.** As long as strict social distancing is required, some activities will not be viable. In the hospitality sector, where close socialization is part of the product, the capital stock will become obsolete. Even in less directly affected sectors, severe capacity under-utilization lowers TFP while restrictions to stem the spread of the pandemic remain in place. Disruptions to employment, schooling and other education while restrictions remain in place—or, in the event of severe income losses, even once restrictions are lifted—will also lower human capital and labor productivity (World Bank 2020d).

- **Compounding financial stress.** Financial crises tend to result in especially protracted labor productivity losses (Figure 3.2.4, World Bank 2020f). Larger disasters are more likely to cause a cascade of business and household bankruptcies and hence a systemic financial crisis. Whilst only a few disasters have been associated with financial crises, governments and private sectors entered the COVID-19 pandemic with already-stretched debt burdens (Kose et al. 2020). These have since increased further and heighten risk of a financial crisis should financial conditions tighten further (Ludvigson, Ma, and Ng 2020).

Mitigating factors. In some dimensions, disasters can accelerate productivity-enhancing changes. They can encourage investment in new and more technologically advanced capital and to train more highly skilled workers (Bloom 2014). Moreover, destruction of old capital may lead to new opportunities for green growth with environmentally friendly new investment, especially if it is induced by structural reforms (Strand and Toman 2010). The mitigation measures of COVID-19, including social distancing, may encourage investment in more efficient business practices, including robotics and other digital technologies such as artificial intelligence.10

| Structural reforms. | The negative outlook ahead means that, after addressing the immediate health crisis, countries need to make productivity-enhancing reforms a priority. These include facilitating investment in human and physical capital, as well as in research and development; encouraging reallocation of resources toward more productive sectors; fostering technology adoption and innovation; and promoting a growth-friendly macroeconomic and institutional environment (World Bank 2020f). In addition, raising the quality and effectiveness of governance and improving the business climate can encourage a faster rebound from disasters. Governments that improved labor and product market flexibility, strengthened legal systems and property rights, fostered effective competition, and addressed inequality set the foundations for more effective adjustment to adverse events (Anbarci, Escaleras, and Register 2005). |

10 See Hallward-Driemeier and Nayyar (2017); Hsiang (2010); Skidmore and Toya (2002); and Strobl (2011). The accompanying job losses are likely to be lower-skilled and less productive (Lazear, Shaw, and Stanton 2013). To the extent vulnerable groups are particularly exposed to economic losses from disasters, policies to protect these groups are needed (OECD 2020b).
Possible mis-steps in macroeconomic policy management. Governments in many countries have taken fiscal and monetary policy action on unprecedented scales in response to the pandemic to support demand and activity. Great care will need to be taken when withdrawing this support, as multiple objectives will need to be served, including sustaining the recovery of output and employment, ensuring the sustainability of public debt, maintaining price stability, promoting long-term growth, and ensuring social cohesion.

Conclusion

The COVID-19 pandemic has already taken an exceedingly heavy human toll and ravaged the global economy. Both advanced economies and EMDEs are experiencing an unprecedented combination of public health crises; sharp increases in borrowing costs, especially in EMDEs; a collapse in global trade, travel, and tourism; and a plunge in commodity prices. These shocks have already led to sharp contractions in many economies.

The pandemic is expected to have severe adverse effects on both short- and long-term economic growth. In the short term, the global economy has already begun to experience a deep recession. Many EMDEs will suffer particularly deep downturns because of their substantial vulnerabilities. In the long term, the pandemic will weigh on potential output and productivity, especially if financial crises erupt and oil prices remain depressed for an extended period. The pandemic and the accompanying recessions will likely prolong and deepen the multi-decade trend decline in long-term growth prospects.

For example, evidence from the Ebola epidemic in West Africa in 2014 suggests that school closures were associated with higher dropout rates and wider gender gaps in educational attainment (UNDP 2015). Large declines in household income are also associated with increased school dropout rates in EMDEs (Glick, Sahn, and Walker 2016).

Erosion of human capital. The learning disruptions associated with widespread school and university closures, as well as income losses, may cause lasting setbacks to human capital accumulation (UNESCO 2020; Wang et al. 2020).
The exceptional severity of the pandemic and economic collapse raises concerns about the risk of “super-hysteresis”: not only a permanent loss of output levels but a permanent slowdown in potential output growth (Ball 2014). The pandemic could alter the very structures upon which the growth of recent decades was built, since it could cause prolonged damage to global supply chains, global trade and financial flows, and global collaboration.

The evolving response to the pandemic has included an extensive menu of policies to dampen the effects of the health crisis, including the short-term economic losses. Many countries have instituted stringent measures to stem the pandemic, including full lockdowns. They have restricted international and domestic travel, closed schools and non-essential businesses, and discouraged work performed other than at home. They have banned, or advised their citizens to avoid, large gatherings. As countries cautiously feel their way toward a gradual reopening of their economies, they face the challenge of rebuilding a healthy economy while at the same time guarding against the threat of a renewed outbreak of the pandemic.

To support their economies through the shutdowns, policymakers have implemented relief programs of an unprecedented scale (Chapter 1; Figure 3.12). The immediate fiscal policy response has included support for health care systems, expanded social benefit programs, and measures to help firms and households. EMDE monetary authorities across the world have eased monetary conditions to support activity and provided emergency liquidity support to stabilize financial markets.

Beyond these short-term policies to confront the current health and economic crisis, the likely long-term implications of the COVID-19 pandemic also highlight the need to lay the foundation for stronger long-term growth. The implication is that for policymakers to be able to fund health systems and support domestic demand through the eventual recovery, they need to credibly undertake comprehensive reform programs to improve institutions and frameworks that can ensure an eventual return to robust growth while setting the stage for stronger long-term prospects. This will require credible fiscal frameworks that ensure that fiscal sustainability will be restored; it will also demand credible monetary policy frameworks that ensure that monetary policy will safeguard low inflation and financial stability. In addition, it will require stronger governance and business environments, and expanding investment in education and public health.

As the world emerges from the pandemic, it will also be critical to strengthen the mechanisms for preventing and responding to epidemics before the next one strikes. Less than 5 percent of countries
entered this pandemic scoring in the highest tier for their ability to respond to and mitigate the spread of an epidemic (NTI and Johns Hopkins 2019). Improving these capabilities will require international policy cooperation and coordination, especially given the global reach of such disasters.

ANNEX 3.1 The macroeconomic effects of pandemics and epidemics: A literature review

A growing literature has examined the economic losses from historical and simulated pandemics, taking account of a range of channels, including labor force disruption; a collapse in consumption, trade, and travel; and amplification through confidence and financial market disruptions. These studies have found initial GDP losses that fall in a range of 1-8 percent. However, these estimates generally do not account for containment measures of the scale used during the COVID-19 pandemic, which could significantly increase the economic costs. Other major economic shocks, such as financial or currency crises, have been associated with persistently negative effects on growth, suggesting that there may be long-term scarring effects from COVID-19.

Introduction

SARS-CoV-2 (COVID-19) is the latest in a long series of global disease outbreaks. In just the past century, the world has experienced four influenza pandemics: H1N1 in 1918-19 (Spanish flu), H2N2 in 1957-58 (Asian flu), H3N2 in 1968-69 (Hong Kong flu), and H1N1 in 2009-10 (swine flu). HIV/AIDS, which appeared in the early 1980s, was also eventually classified as a pandemic. In addition, the world has suffered from numerous other disease outbreaks, such as SARS-CoV (Severe Acute Respiratory Syndrome, or SARS) in 2002-03, MERS-CoV (Middle East Respiratory Syndrome, or MERS) in 2012, Ebola in 2014-15 and again in 2018-20, the Zika virus in 2015-16, as well as endemic diseases such as cholera and yellow fever (Table A.3.1.1).

Past pandemics, especially the Spanish flu, have imposed a heavy toll in terms of human lives. The number of fatalities from COVID-19 is rising strongly, and is likely to rise considerably more (Figure A.3.1.1; Atkeson 2020; Ferguson et al. 2020).

Pandemics and epidemics also have significant economic impacts. Even a relatively mild pandemic, in terms of the number of deaths, can generate substantial global output losses in the short term. This annex reviews the relevant literature, addressing the following questions:

- What are the channels through which the global economy is disrupted by pandemics and epidemics?
- What were the economic costs associated with previous pandemics and what do model-based simulations suggest about the costs of pandemics of different severity?
- What are the expected economic costs of COVID-19, based on existing studies?

Channels of economic impact

The macroeconomic impacts of disease outbreaks (epidemics or pandemics) stem from effects on aggregate demand and aggregate supply. Demand-side channels capture the effects on consumption, investment, trade, and travel, while supply-side channels capture workforce and supply-chain disruptions and the rising costs of doing business.\(^1\)

Demand channels

Avoidance, fear, and uncertainty. Infectious disease outbreaks can have a substantial impact on demand as governments, consumers, and firms take actions to limit contagion. In some cases, this effect may be magnified by uncertainty. SARS, for example, triggered a substantial reduction in travel, consumption, services exports (including tourism), and even investment, despite causing just 800 deaths. Consumer spending patterns have

\(^1\)In addition, the supply-side effects can trigger large falls in income which are then magnified by credit constraints and firm failures, reducing demand (Guerrieri et al. 2020).
shifted dramatically during the COVID-19 pandemic. In the United States, the magnitude of changes in spending has been linked to both the severity of local outbreaks, which creates heightened avoidance of contagion risk, and to controls imposed at the city and state level, which halt many normal activities (Baker, Farrokhina et al. 2020). Heightened uncertainty may also be reflected in financial market stress. The market volatility from COVID-19 has been severe. Risk spreads on borrowing costs have widened sharply. Many EMDEs have experienced capital flight. Previous infectious disease outbreaks have had qualitatively similar effects on financial markets (Ma, Rogers, and Zhou 2020).

Supply channels

Labor force effects. Illness and preventive measures to reduce contagion during infectious disease outbreaks reduce available labor supply and labor productivity in the short run, while loss of schooling and job experience, as well as mortality, can have persistent effects. In past pandemics, illness and absences to care for family members reduced labor supply more than mortality (Kilbourne 2004; McKibbin and Sidorenko 2006).

Business closures and supply chain disruptions. Business costs are likely to increase during a pandemic as measures are taken to protect employees and the general population, and closures can exact an even greater toll. Empirical assessments of disease outbreaks have found that high-exposure service sectors, such as travel, accommodation, and food services, are hardest hit during pandemics, even when few restrictions or closures were imposed (Joo et al. 2019; Siu and Wong 2004). Manufacturing can be deeply affected by supply chain disruptions. In some CGE-based estimates of the economic costs of pandemics, rising business costs in affected sectors are responsible for the majority of economic losses (Lee and McKibbin 2003; McKibbin and Sidorenko 2006).

2 In addition, over the long term, the loss of human capital due to fatalities during the outbreak can result in long-term output losses (Fan, Jamison, and Summers 2018).
Amplifying and dampening factors

Several factors affect the magnitude of economic losses from disease outbreaks.

Demographic profiles. Large-scale infectious disease outbreaks tend to strike some age segments more than others. For example, the case fatality rate during the Spanish flu was highest for young adults, while during the Asian flu, school-aged children and young adults experienced the largest elevation in mortality relative to the baseline (Gagnon et al. 2013; Viboud et al. 2016). Early experience with COVID-19 shows a disproportional higher frequency of death for the elderly suggesting that the loss of life may be severe for countries and regions with a high share of older people (Farzanegan, Feizi and Gholipour 2020; Sornette et al 2020; Verity et al. 2020).

Health care systems and social safety nets. Low-and lower-middle-income economies may suffer particularly high loss of life from disease outbreaks as a result of low-quality health care systems and poor access to water and sanitation services (Corburn et al. 2020; Farzanegan, Feizi, and Gholipour 2020; McKibbin and Sidenenk 2006). Weak social safety nets can magnify the economic impacts of pandemics for lower-income households. Because low-income workers typically have limited savings to buffer income shocks, and because telecommuting is not an option for many low-paid service jobs, these workers may be forced to work in environments where the risk of infection is high.

Cross-country spillovers. Simulations have shown that global trade would fall by as much as 14 percent in a medium-scale outbreak of avian flu, even if viral cases were limited to South and East Asia (Bloom, de Wits, and Carangal-San Jose 2006). During the SARS outbreak, the high dependence of Hong Kong SAR, China on tourism and services exports was found to have magnified GDP losses (Siu and Wong 2004). Disruption to global value chains provides an additional channel that can increase the economic cost of pandemics and epidemics. The impact of COVID-19 on global trade has been a major concern in part because countries that collectively account for the majority of global manufacturing production and exports (China, Germany, Italy, Korea, and the United States) have also experienced some of the largest outbreaks (Baldwin and Tomiura 2020).

Macroeconomic policy response. Fiscal and monetary policy support can blunt the adverse economic impacts of disease outbreaks and aggressive mitigation measures. With much of the global economy under lockdown during the COVID-19 pandemic, such support has been essential to offset drastic interruptions to the normal income, credit, and spending patterns among businesses and households. The effectiveness of policy support depends on the credibility of the measures, and the extent of pre-existing vulnerabilities such as high debt levels and large external financing needs, and structural issues. For example, fiscal multipliers are typically lower in economies with high debt (Huidrom et al. 2019). The effectiveness of fiscal policy also depends critically on a well-functioning social security system, and could be complicated by high levels of informality (Box 1.4; Loayza and Pennings 2020). Monetary policy easing also may be less effective in economies with large informal sectors and low financial inclusion (Alberola-Ila and Urrutia 2019).

TABLE A.3.1.1 Estimated mortality and infection rates of pandemics during the past century

<table>
<thead>
<tr>
<th>Period</th>
<th>Spanish flu</th>
<th>Asian flu</th>
<th>Hong Kong flu</th>
<th>Swine flu</th>
<th>COVID-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths (% of global population)</td>
<td>1.0-5.7</td>
<td>0.03-0.05</td>
<td>0.02-0.03</td>
<td>0.001-0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Infections (% of global population)</td>
<td>28</td>
<td>42-55</td>
<td>30-57</td>
<td>24</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Source: Cobos et al. (2016); Johnson and Mueller (2002); Johns Hopkins University Coronavirus Resource Center; Simonsen (1999); Taubenberger and Morens (2006).

Note: COVID-19 infections and deaths are as of May 22, 2020.

3 The U.S. Department of Health and Human Services (2020) estimates that the case fatality rate for patients ages 20-44 is less than one-tenth of the rate for patients ages 65-74.
Estimates of economic losses

The literature has studied the economic impacts of disease outbreaks using both model-based simulations and empirical analysis of historical pandemics.

- **Computable general equilibrium (CGE) models.** Several global CGE models have been applied to estimate losses of simulated pandemics (Lee and McKibbin 2004; McKibbin and Fernando 2020; McKibbin and Sidorenko 2006; Verikios 2011). These models offer rich sectoral disaggregation that allows the consideration of differential effects across industries, estimation of trade spillovers, and endogenous policy responses.

- **Empirical estimates of historical episodes.** Estimates of the impact of actual pandemics have the advantage of taking account of the actual losses experienced (Barro, Ursua, and Weng 2020; Correia, Luck, and Verner, 2020; Keogh-Brown and Smith 2008; Siu and Wong 2004). However, they are often unable to distinguish the effects of the pandemic from other factors.

Simulated outbreaks

Studies of simulated pandemics typically use mortality rates to classify the severity of the event (Table A.3.1.2). Simulations with higher mortality rates tend to generate larger economic losses. Containment and mitigation measures, including social distancing and restriction of movements, are largely absent from the literature on simulated pandemics. However, a study of the United Kingdom reports that a three-week school closure in response to a simulated influenza outbreak reduces GDP by about 0.5 percentage point in the first year, in addition to the 0.8-1.7 percent loss of output directly attributable to infections (Smith, Keogh-Brown, and Barnett 2011).

Mild pandemics. These are defined to have mortality rates of less than 20 per 10,000 people. Historical examples are the Hong Kong flu, with about 2 deaths per 10,000; and the Asian flu, with about 4 deaths per 10,000. In model simulations, their impact reduces GDP by 0.7-0.8 percent in both advanced economies and EMDEs in the first year (Figure 1.1; McKibbin and Sidorenko 2006).

Intermediate pandemics. These are defined to have mortality rates of 20-50 per 10,000 population. Model simulations suggest, during the first year, reductions of 1.6-3.5 percent of GDP in EMDEs, and 2.0-4.6 percent of GDP in advanced economies (Burns, van der Mensbrugghe, and Timmer 2006; Verikios et al. 2011). Relative to mild pandemics, modeled intermediate pandemics show larger losses from reduced labor supply, negative shocks to consumption, financial market disruption, and increases in business costs (Table A.3.1.2).

Severe pandemics. These are defined to have more than 50 deaths per 10,000 population. In model simulations, pandemics on this scale reduce GDP by 3.6-7.0 percent in EMDEs, and 3.0-8.0 percent of GDP in advanced economies (McKibbin and Sidorenko 2006; Burns, van der Mensbrugghe, and Timmer 2006).

Historical outbreaks

Historical analysis of the economic costs of previous pandemics and epidemics is complicated by lack of data and the simultaneous presence of other shocks. For example, the Spanish flu overlapped with World War I, while the swine flu pandemic broke out during the global financial crisis. Empirical investigations of these episodes suggest that the results of the model-based simulations are in the right range (Table A.3.1.3). Thus, the Spanish flu is estimated to have lowered GDP by about 6 percent during 1918-19, with

4Mortality rates are more variable than infection rates. Estimates put the mortality rate of the Spanish flu at more than 500 times that of the 2009 swine flu pandemic, and the infection rate only 1.5 times larger.

5Here and in the subsequent two paragraphs, the 10,000 figure refers to the whole population, rather than just the infected population.

6Pandemics can also be differentiated into those with high mortality but low infection rates and vice versa. A pandemic with a moderate case fatality rate but high contagion could generate economic losses many times higher than a pandemic with a high fatality but low contagion (Verikios et al. 2011).
more cyclical economic sectors, such as manufacturing, experiencing output reductions of up to 18 percent (Barro, Ursua, and Weng 2020; Correia, Luck, and Verner 2020). In contrast, estimates for more moderate episodes of influenza, such as the Asian flu, which killed approximately 1 million people globally, show GDP losses that are largely indistinguishable from normal growth volatility (Henderson et al. 2009). SARS is estimated to have reduced output by 1-4 percent in some of the worst affected economies in the second quarter of 2003, with less clear impacts on growth during the whole of 2003 (Siu and Wong 2004).

COVID-19: Short and long-term losses

Several studies have published initial estimates of the possible economic losses from the COVID-19 pandemic (Table A.3.1.4). Some take account of the economic impacts of the stringent containment and mitigation measures, which could make the economic impacts of this pandemic much more severe relative to past episodes (Boissay and Rungcharoenkitkul 2020).

Short-term economic losses

The existing estimates of the economic consequences of COVID-19 have a wide range, reflecting the large uncertainty surrounding contagiousness, the eventual infection and fatality rates, the stringency and duration of policies to reduce virus transmission, and other factors (Figure A.3.1.1). The first estimates showed small economic losses. Subsequent estimates were higher, as the pervasiveness and severity of the disease, and the containment and mitigation measures, became more apparent. The “optimal” containment measures are assumed to reduce deaths as a share of the initial population from 0.4 percent to 0.26 percent.

One study puts output losses from the COVID-19 pandemic at 2-6 percent of GDP in EMDEs in the first year, and 2-8 percent in advanced economies (McKibbin and Fernando 2020). This would be comparable to the estimated 6 percent global economic losses due to Spanish flu (Barro, Ursua, and Weng 2020). Maliszewska, Mattoo, and van der Mensbrugghe (2020) estimate losses of 2.5-4.0 percent in EMDEs, and 1.8-3.8 percent of GDP in advanced economies. This results from a fall in employment, lower consumption, rising trade costs, and reduced travel and tourism. However, these studies do not factor in the full stringency of the controls that were later imposed globally.

Several studies have attempted to separate the losses of output that preventive controls may impose from those of a hypothetical COVID-19 outbreak with no such restrictions. Restrictions on retail, travel, and other services industries could reduce output by 25 percent in OECD economies during their enforcement (OECD 2020a). Were these restrictions to remain in place over three months in 2020, this would imply a 6 percent reduction in annual GDP, equivalent to estimates of lost output in severe simulated pandemics (without explicit containment measures) and empirical estimates of losses from Spanish flu. Other estimates suggest that growth will be approximately 5-8 percentage points lower in advanced economies and EMDEs in 2020 due to the effects of COVID-19 and associated containment measures. The impact on growth would be an additional 3 percentage points if the duration of containment measures is extended to increase the number of lost working days by 50 percent (IMF 2020).

A developing strand of the literature models the economic impact of imposing “optimal” containment measures to limit the spread of COVID-19. In a model of the United States, consumption falls by 22 percent under optimal containment measures, compared to just 7 percent if only the effect on labor supply owing to illness and mortality and consumer behavior is considered (Eichenbaum, Rebelo, and Trabandt 2020). Another model-based approach applied to...
the United States finds that targeting containment measures to older age groups results in a 10 percent reduction in output over one year, compared to a 24 percent loss of output with universally-applied lockdown measures (Acemoglu et al. 2020). Age-targeted containment measures may be particularly effective at limiting output losses in EMDEs, which have a smaller share of their population in vulnerable age groups (Alon et al. 2020).

Medium- and long-term impacts

Scarring effects and offsetting policy. Most analysis of the economic costs of pandemics and epidemics focuses on short-term impacts. However, severe economic contractions of the magnitude expected in 2020 have historically cast long shadows, typically lowering potential growth for four to five years (Box Lasting damage of recessions; Martin, Munyan, and Wilson 2015; World Bank 2018). This can result from reduced investment, credit constraints, and slower adoption of new technologies (Anzoategui et al. 2019; Queralto 2019). History suggests that good policy may reduce the adverse effects of severe contractions. Regions implementing significant containment measures during the Spanish flu are found to have experienced faster rates of growth than other regions in the five years following the pandemic (Brainerd and Siegler 2003; Correia, Luck, and Verner 2020).

Debt and insolvency risk. The negative shock from COVID-19 is occurring at a time of heightened vulnerabilities in sovereign and private sector debt. Historically, episodes of rapidly accumulating debt are associated with an increased likelihood of a financial crisis (Kose et al. 2020). The unprecedented scale of the current fiscal stimulus will stretch public sector balance sheets even further in many EMDEs, and in some advanced economies. Private sectors may experience a wave of insolvencies, posing a threat to banking systems in various jurisdictions. One of the lasting effects of the COVID-19 induced recession may be increased financial fragility.

Human capital implications. Schools and universities have been closed across the world as part of the policy response to slow the spread of COVID-19 (UNESCO 2020). The associated learning disruptions, although partially compensated by home schooling and remote teaching, are likely to have the most adverse effects for disadvantaged students, including on health and safety (World Bank 2020d). School closures may cause lasting setbacks to human capital accumulation and earnings potential (Psacharopoulos et al. 2020; Wang et al. 2020). Missed learning opportunities can have larger impacts for low-income families, who often have limited ability to support learning at home (Van Lancker and Parolin 2020). Evidence from the Ebola epidemic in West Africa in 2014 suggests that school closures were associated with higher dropout rates and wider gender gaps in educational attainment (UNDP 2015). Large declines in household income are also associated with increased school dropout rates in EMDEs (Glick, Sahn, and Walker 2016). In addition, closure of workplaces will deprive many people of opportunities to improve skills and productivity through apprenticeships and on-the-job learning.

Poverty implications. The COVID-19 pandemic could have severe effects for the poor through multiple channels, including greater vulnerability to declines in labor and non-labor income, increased risk of infection and mortality, and lower availability of essential items due to market disruptions hit the poor particularly hard (Barnett-FAO et al. 2020; Howell and Mobarak 2020; World Bank 2020d). Although the social assistance measures that have been implemented by many countries may soften the impacts on households, they do not fully offset the income losses from shutdowns. Moreover, the poorest members of society have little capacity to manage negative income shocks. Less than 20 percent of workers are covered by social insurance or assistance programs in low-income countries (LICs), in part due to their large informal sectors (World Bank 2019b). All this suggests that recent progress on the reduction of poverty and inequality will likely be lost (Sumner, Hoy, and Ortiz-Juarez 2020).

10 Downward pressure on real rates of return following a pandemic may be particularly persistent, lasting for about 40 years (Jordá, Singh, and Taylor 2020).
Structural changes in production, consumer behavior, and work patterns. The fragility of the global trading system, highlighted by disruptions in global value chains, and by shortages of essential goods in many countries during the COVID-19 outbreak, may lead governments and firms to reassess the benefits of low-cost, off-shore sourcing. Onshoring efforts will have costs, however. Domestically, resources may be diverted into capital-intensive import-substitution. Aside from this, efforts to avoid viral contamination may linger long after the pandemic dissipates. This could lead to changes in the structure of production on a much larger scale than those which past recessions have triggered. Certain restrictions, and adjustments in consumer behavior, to reduce the risk of infection may prove highly persistent (Smith et al. 2014). For example, the experience with widespread remote working may permanently change the nature of workplaces. Avoidance of crowds may mean that established business models of popular entertainment are no longer viable. It may take the travel industry years to recoup the tourist losses it has suffered in 2020.

TABLE A.3.1.2 Economic impacts of simulated influenza pandemics

<table>
<thead>
<tr>
<th>Paper</th>
<th>Total mortality (per 10,000 people)</th>
<th>Channels and shocks</th>
<th>Containment measures and policy response</th>
<th>Time horizon</th>
<th>Method</th>
<th>Peak GDP loss in advanced economies (percent)</th>
<th>Peak GDP loss in EMDEs (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McKibbin and Sidorenko (2006)</td>
<td>2.2-22</td>
<td>- Illness: the labor force is reduced by 1.15% - Mortality: 0.02-2.2% of the labor force is killed by influenza - Tourism and trade reductions - Financial market disruption - Business costs rise, with the largest increase in sectors requiring more social interaction - Costs shocks for the most affected sectors - Demographics and health care quality affect the illness and mortality rates across economies</td>
<td>No explicit containment or policy measures</td>
<td>1 year</td>
<td>DSGE/CGE</td>
<td>0.7-7.1</td>
<td>0.7-6.3</td>
</tr>
<tr>
<td>Burns, Mensbrugghe, and Timmer (2006)</td>
<td>108</td>
<td>- Illness and mortality - Reduction of 20% in travel, transport, and restaurant consumption for 1 year</td>
<td>No explicit containment or policy measures</td>
<td>1 year</td>
<td>DSGE/CGE</td>
<td>3.0</td>
<td>3.6</td>
</tr>
<tr>
<td>Smith, Keogh-Brown, and Barnett (2011)</td>
<td>35%</td>
<td>- Illness: 35% of working labor force is infected - Case fatality rate of 0.06-0.35%</td>
<td>School closures and prophylactic absenteeism considered in alternate scenarios</td>
<td>1 year</td>
<td>CGE</td>
<td>United Kingdom: 0.3-0.6 considering disease only; 3.4-4.3 with school closures and prophylactic absenteeism</td>
<td>-</td>
</tr>
<tr>
<td>Verikios et al. (2011)</td>
<td>20</td>
<td>- Illness and mortality - unspecified - School closures add 75% to lost working days - Reduction of tourism and travel of 70%</td>
<td>School closures</td>
<td>Multi-year</td>
<td>CGE</td>
<td>3.9</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Note: Losses are reported relative to a baseline level of GDP or growth rate, which are approximately equivalent. Median of the first year GDP loss in advanced economies or EMDEs are reported, except Burns, Mensbrugghe, and Timmer (2006), which only reports aggregated GDP impact. “High-income countries” in Burns, Mensbrugghe, Timmer (2006) are presented in the tables as advanced economies and “low and middle-income countries” are presented as EMDEs.
TABLE A.3.1.3 Estimates of economic impacts of historical pandemics and epidemics

<table>
<thead>
<tr>
<th>Event</th>
<th>Study</th>
<th>Estimation technique</th>
<th>Geographical coverage</th>
<th>Estimate of immediate impact</th>
<th>Estimate of subsequent impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish flu</td>
<td>Brainerd and Siegler (2003)</td>
<td>Growth regressions controlling for the death toll from flu and other factors as explanatory variables in 1918 for per capita growth over the subsequent 10 years</td>
<td>United States (state by state)</td>
<td>n/a</td>
<td>+0.2 percentage points per year growth for 10 years following the pandemic</td>
</tr>
<tr>
<td>Spanish flu</td>
<td>Karlsson, Nilsson, and Pichler (2014)</td>
<td>Growth regressions exploiting regional differences in influenza incidence and mortality rates during 1918-19</td>
<td>Sweden</td>
<td>No discernable effect on aggregate earnings or GDP per capita but a large increase in poverty rates</td>
<td></td>
</tr>
<tr>
<td>Spanish flu</td>
<td>Barro, Ursua, and Weng (2020)</td>
<td>Growth regressions controlling for country-specific factors, war-related deaths, and influenza-related deaths to assess the influenza-specific fall in GDP</td>
<td>43 advanced economies and EMDEs</td>
<td>GDP reduced by 6%, consumption reduced by 8%</td>
<td></td>
</tr>
<tr>
<td>Spanish flu</td>
<td>Correia, Luck, and Verner (2020)</td>
<td>Exploits state and city influenza deaths to assess the specific effects on manufacturing output and employment</td>
<td>United States</td>
<td>Manufacturing output reduced by 18% and employment by 23% by 1919</td>
<td>Regions with longer-lasting public health interventions (46 days longer) experienced a 6% rise in manufacturing employment and a 7% rise in output following the pandemic</td>
</tr>
<tr>
<td>Asian flu</td>
<td>Henderson et al. (2009)</td>
<td>Event study of industrial production</td>
<td>Canada</td>
<td>1% fall in industrial production at the time of the outbreak</td>
<td></td>
</tr>
<tr>
<td>SARS</td>
<td>Lee and McKibbin (2004)</td>
<td>CGE modeling exercise calibrated following the SARS epidemic</td>
<td>Asia-Pacific</td>
<td>Reduction in 2003 GDP: Hong Kong SAR, China -2.6% China -1.1% Singapore -0.5%</td>
<td></td>
</tr>
<tr>
<td>SARS</td>
<td>Siu and Wong (2004)</td>
<td>Event study of the effects of SARS using sectoral, trade, and tourism data</td>
<td>Hong Kong SAR, China</td>
<td>Initial 15% decline in year-on-year retail sales growth during the peak of the outbreak; tourist arrivals decline 10% at peak; unemployment rate increases by more than one percentage point at peak; tourist arrivals and consumption subsequently recover to pre-SARS levels but no indication that lost growth is recovered</td>
<td></td>
</tr>
<tr>
<td>SARS</td>
<td>Keogh-Brown and Smith (2008)</td>
<td>Event study examining a range of aggregate and sectoral indicators</td>
<td>16 economies, primarily in Asia</td>
<td>One-quarter losses: China -3% Hong Kong SAR, China -4.75% Canada -1% Singapore -1% Losses are concentrated in travel, leisure activities, and tourism; results do not specify whether quarterly impacts are recovered in subsequent quarters</td>
<td></td>
</tr>
<tr>
<td>SARS</td>
<td>Kholodilin and Rietha (2020)</td>
<td>VAR using monthly data on industrial production and index of news about flu-like disease</td>
<td>Eight major economies</td>
<td>News of SARS outbreak reduced industrial production by 2% in China and 10% in Republic of Korea during the peak of the episode</td>
<td></td>
</tr>
<tr>
<td>MERS</td>
<td>Joo et al. (2019)</td>
<td>Event study of tourism, travel, accommodation, and food sectors during 2015</td>
<td>Republic of Korea</td>
<td>Permanent losses in affected sectors equivalent to -0.2% of GDP</td>
<td></td>
</tr>
</tbody>
</table>
TABLE A.3.1.4 Preliminary estimates of economic impacts of COVID-19

<table>
<thead>
<tr>
<th>Paper</th>
<th>Total mortality (per 10,000 people)</th>
<th>Channels and shocks</th>
<th>Containment measures and policy response</th>
<th>Time horizon</th>
<th>Method</th>
<th>Peak GDP loss in advanced economies (percent)</th>
<th>Peak GDP loss in EMDEs (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMF (2020)</td>
<td>Not specified</td>
<td>- Labor supply falls by 5-8% globally in 2020 - Financial market disruption and credit tightening in 2020, fading in 2021. Downside scenario assumes an additional 75 basis point rise in sovereign credit spreads in EMDEs and an additional 50 basis point rise in advanced economies - Commodity prices sharply fall in 2020. Oil prices remain around 15% below baseline in 2021</td>
<td>- Containment measures implemented in 2020Q2 and withdrawn in 2020Q3; more severe case restrictions last 50% longer - Unconventional monetary policy is implemented in advanced economies, alongside fiscal measures</td>
<td>2 years</td>
<td>Baseline WEO forecast and semi-structural DSGE model</td>
<td>7.7 – 10(^1)</td>
<td>5.4-8(^1)</td>
</tr>
<tr>
<td>Maliszewska, Mattoo, and van der Mensbrugghe (2020); World Bank (2020c)</td>
<td>Not specified</td>
<td>- Illness and mortality reduce labor input by 3% in year 1 - Trade costs increase by 25% across all goods and services - Tourism fall implemented with a 50% increase in costs - Demand “reallocated” away from high-risk service sectors</td>
<td>- Effect of containment embedded in assumptions about labor input and consumption reduction</td>
<td>1 year</td>
<td>CGE</td>
<td>1.8-3.8</td>
<td>2.5-4.0</td>
</tr>
<tr>
<td>McKibbin and Fernando (2020)</td>
<td>20-90</td>
<td>- Illness and mortality: -0.4 to -4.6% fall in labor supply - Consumer behavior: initial -0.8 to -4.5% fall in total consumption, including targeted tourism and trade reductions - Financial market disruption: 1.1-2.9 percentage point increase in equity risk premium - Costs of doing business: 25-50% increase, varying by sector - Demographics and health care quality indexes vary mortality rates across economies</td>
<td>- No explicit containment measures - 0.2-2.7% positive shock to government expenditure - Endogenous fiscal and monetary response to shocks</td>
<td>1 year</td>
<td>DSGE/ CGE</td>
<td>2.0-8.0</td>
<td>1.6-6.0</td>
</tr>
<tr>
<td>WTO (2020)</td>
<td></td>
<td>- Illness and mortality reduce labor supply by 1-4% in year 1 - Tourism declines 20-80% over 3-6 months - Retail activity declines 5-20% over 3-9 months - Manufacturing falls by a maximum of 80% for 3 months and 40% for 6 months - Trade costs increase: 22.5% rise in cost of services transport and specialized equipment transport over 6-18 months, 70% rise in air cargo costs over 6-18 months</td>
<td>- Work from home for 3 months 2 years to 1 year and school closures for 3 months</td>
<td>CGE</td>
<td>4.8-11.1 in year 1 (global)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baker et al. (2020b)</td>
<td>Not specified</td>
<td>- Based on U.S. stock return and volatility from February 24 to March 31</td>
<td>n/a</td>
<td>VAR</td>
<td>3-20 (United States)(^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banco de España (2020)</td>
<td>Not specified</td>
<td>- Spillovers from weak global economy - Weak domestic demand due to containment - Discretionary fiscal policy to support the economy</td>
<td>- 8-12 weeks of containment measures, reducing domestic demand</td>
<td>2 years, with strong rebound in year 2</td>
<td>Hybrid macro model</td>
<td>8.5-14.1 (Spain)</td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td>Total mortality (per 10,000 people)</td>
<td>Channels and shocks</td>
<td>Containment measures and policy response</td>
<td>Time horizon</td>
<td>Method</td>
<td>Peak GDP loss in advanced economies (percent)</td>
<td>Peak GDP loss in EMDEs (percent)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--------------</td>
<td>-------------------------</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Breisinger et al. (2020)</td>
<td>Not specified</td>
<td>- Zero internal tourism during crisis</td>
<td></td>
<td>n/a</td>
<td>1 year</td>
<td>Social accounting matrix</td>
<td>2.1-4.8 (Egypt)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 10-15% reduction in remittance and Suez Canal revenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Shocks last 3-6 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Çakmaklı et al. (2020)</td>
<td>0.2-96</td>
<td>- Illness and mortality</td>
<td>- 0-35 weeks of lockdown</td>
<td>1 year</td>
<td>DSGE/CGE/SIR</td>
<td>4.5-11.0 (Turkey)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Changing consumer demand</td>
<td>- Only selected industries are active</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 18-23% decline in exports due to weaker external demand for final goods and intermediate goods</td>
<td>during full lockdown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duan et al. (2020)</td>
<td>0.24</td>
<td>- Household consumption declines 5-10% in Q1</td>
<td>- Labor supply reduced by 10-50% in Q1 and rebounded in Q2</td>
<td>1 year</td>
<td>CGE</td>
<td>0.6-1.7 (China)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eichenbaum, Rebelo, and Trabandt (2020)</td>
<td>20-30</td>
<td>- Illness and mortality</td>
<td>- Optimal containment measures at their peak during the year restrict 76% of the population from working</td>
<td>2 years – effects largely dissipate in year 2</td>
<td>DSGE/CGE/SIR</td>
<td>4.7-14.5 (United States)³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Consumer behavior – consumption falls by 7% without containment measures in year 1; consumption falls by 22% with containment measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Losses are reported relative to a baseline level of GDP or growth rate, which are approximately equivalent. Median of the first year GDP loss in advanced economies/EMDEs are reported.

1. Calculated as the deviation of the forecast in the IMF’s April 2020 World Economic Outlook relative to its January 2020 World Economic Outlook Update. Upper bound is calculated under the scenario such that containment measures last 50 percent longer than baseline. Upper bound numbers are rounded to nearest integer.

2. 90 percent confidence interval of year-on-year change on quarterly GDP in the worst quarter.

3. Indicates a GDP impact based on the study’s cited consumption impact of 7 percent without containment and 22 percent with containment, and assuming that consumption accounts for two-thirds of GDP.
ANNEX 3.2 Bayesian vector autoregression model

A Bayesian vector autoregression model (BVAR) is employed, in reduced form, to capture past empirical relationships through multiple channels. These channels operated historically, including during previous global synchronized downturns. Spillovers are estimated using the BVAR model including, in this Cholesky ordering, the GDP-weighted average of GDP growth in China, the Euro Area, and the United States; oil prices (unweighted average of Brent, WTI, and Dubai prices); a measure of global interest rates (GDP-weighted average of up to 122 central bank policy rates); a measure of EMDE sovereign borrowing costs (J.P. Morgan’s EMBI Emerging Market Bond Index); and GDP-weighted average GDP growth of groups of EMDEs. GDP-weighted averages are at 2010 market exchange rates and prices. These variables correspond to those used in VAR-based estimations of spillovers across economies and in standard small open economy DSGE models that have been used to examine the transmission of shocks across economies (Huidrom et al. 2020). The sample includes quarterly data for up to 48 EMDEs for 1998-2019.

The VAR is estimated using four lags, as is standard in quarterly VARs, and using Normal-Wishart priors, taking the form:

\[Y_t = C + \sum_{i=1}^{4} B_i Y_{t-i} + \epsilon_t \]

where \(Y_t \) is an \(m \times 1 \) vector of endogenous variables, \(C \) is an \(m \times 1 \) vector of constants, \(B_i \) is an \(m \times m \) vector of coefficients for each lag of \(Y \), and \(\epsilon_t \) is an \(m \times 1 \) vector of reduced-form error terms.

The BVAR is identified using an assumption on the exogeneity of the variables with respect to one another in the first quarter following an economic shock (using a Cholesky decomposition of the error variance-covariance matrix). In particular, the identification assumes that a shock to all three major economies’ (China’s, Euro Area’s and U.S.) GDP growth combined is initially exogenous to changes in the other variables, such that they can only affect growth in the three major economies with a lag of at least one quarter. Oil prices, global interest rates, and the EMBI are also assumed to be initially exogenous to growth in each of the EMDE regions under consideration, but not exogenous to fluctuations in growth of the three major economies. This is consistent with the three major economies, and in particular China, accounting for a major proportion of global demand for oil (Baffes, Kabundi, and Nagle 2020). It is also consistent with research suggesting that monetary policy in the United States is a key driver of global financial conditions, in part reflected by the EMBI, which can subsequently drive macroeconomic developments in EMDE regions (Miranda-Agrippino and Rey 2020).

Impulse response functions (IRFs) are estimated to account for the impact of shocks from growth in the three major economies to each EMDE aggregate. Due to the identification of the VAR, these shocks also contemporaneously affect oil prices, interest rates, and the EMBI, allowing additional spillovers through commodity and financial channels to EMDE aggregates.

ANNEX 3.3 EMDE vulnerability index

Methodology. For each country, six vulnerability sub-indexes are calculated that capture the main challenges EMDEs are facing in the current pandemic: health, financial, fiscal, trade, tourism, and poverty.

- The financial vulnerability index is compiled from current account and fiscal balances (percent of GDP); government, corporate, and external debt (percent of GDP); the share of short-term external debt; and the share of foreign-currency-denominated government and corporate debt.

- The fiscal vulnerability index is compiled from government debt and fiscal balances (in percent of GDP) and the share of foreign-currency government debt.

- The trade vulnerability index is compiled from the share of trade in GDP; the share of commodity exports in total goods exports; the
share of external value added in domestic exports (backward global value chain integration); and the share of domestic value in foreign exports (forward global value chain integration).

- The tourism vulnerability index is derived from tourism revenues as a share of GDP.
- The health vulnerability index is derived from the number of beds, nurses and doctors per 1000 people; the DALY; and health expenditures as percent of GDP.
- The poverty vulnerability index is derived from the share of the informal economy in GDP, the share of adults with access to emergency funds, the share of firms with accounts, and the share of firms with bank loans.

The indicators are aggregated in three steps. First, for each indicator, its percentile in the full panel is calculated. Second, for each sub-index, a country-specific sub-index is calculated as the unweighted average of all indicators within the sub-index. A sub-index with a value above 50 therefore indicates that, on average, indicators in this sub-index score worse than the median in their largest available sample of data. Third, country-specific sub-indexes are aggregated into GDP-weighted averages (at 2010 market exchange rates and prices) of EMDE sub-indexes.

Data. Fiscal indicators are drawn from the International Monetary Fund’s World Economic Outlook and the International Institute of Finance. Financial indicators are drawn from the International Monetary Fund’s World Economic Outlook, the International Institute of Finance, and the World Bank’s External Debt Hub. Trade indicators are drawn from the OECD’s TiVA database and the World Bank’s WITS. The tourism indicator is drawn from the World Tourism Association. The health indicators are drawn from the World Bank’s World Development Indicators and the World Health Organization. The poverty indicators are drawn from World Bank (2019d) and the World Bank’s Findex database (World Bank 2017). The database is an unbalanced sample of 197 countries, of which 154 EMDEs, for 1960-2019.

ANNEX 3.4 Long-term implications of recessions: Data and methodology

Definitions and data. Potential growth is defined as in Kilic Celik, Kose, and Ohnsorge (2020) and World Bank (2018) and is based on a production function approach. Annual data is available for up to 95 EMDEs for 1982-2018. Recessions are defined as years of negative output growth, as in Huidrom, Kose, and Ohnsorge (2016). Depending on data availability for potential growth estimates, this definition yields up to 65 recession events in 32 advanced economies and up to 203 recession events in 75 EMDEs during 1982-2018. Hence, outright output contractions are rare, at about 6 percent of the country-year pairs in the sample.

Financial crises are defined as having an economic crisis in the form of systematic banking crises, currency crises, or sovereign debt crises as identified in Laeven and Valencia (2018). During 1982-2018, there have been 42 financial crises in 26 advanced economies and 27 financial crises in 87 EMDEs in the regression sample—almost 7 percent of country-year pairs in the sample.

Oil price plunges are defined as periods when the average of Brent, WTI, and Dubai oil prices declined by 30 percent or more over a seven-month period. Before 2020, there were six such oil price plunges: two supply-driven plunges, when OPEC agreements were abandoned (1986, 2014-15) and four demand-driven plunges when the global economy went into a downturn or an outright recession (1990-91, 1998, 2001, 2008).

Methodology. A local projection model (LPM) is used to assess and quantify the effects of recessions on potential and actual growth and output levels (Jorda 2005). Impulse response functions show the duration, smoothness, and recovery of potential output levels after the onset of an event.

\[
y_{t+s+h} - y_{t+s} = \alpha_i + \beta_i \text{event}_{i,t} + \sum_{p=1}^{h-1} \gamma_p \text{event}_{t+s-h+p} + \delta \text{dy}_{t+s-1} + \epsilon_{i,t}
\]

where \(y\) is log potential output level, \(dy\) is potential growth and \(\beta_h\) is the main coefficient of
the interest. The equation controls for country-specific effects (α_i) and persistence of the shock by including the lagged shock in a forward bias correction (Teulings and Zubanov 2014).

Five shocks are considered: recessions, financial crises, oil price plunges, a combination of recessions and financial crises, and a combination of recessions and oil price plunges. The final event is estimated for the subsample of 26 energy-exporting countries, including 24 energy-exporting EMDEs.

In a second step, regressions are estimated with three separate interaction terms to explore the role of vulnerabilities to financial crises: external debt in percent of GDP, current account balances in percent of GDP, and the presence of an inflation targeting regime.

The equation controls for country-specific effects (α_i) and persistence of the shock by including the lagged shock in a forward bias correction (Teulings and Zubanov 2014).

Five shocks are considered: recessions, financial crises, oil price plunges, a combination of recessions and financial crises, and a combination of recessions and oil price plunges. The final event is estimated for the subsample of 26 energy-exporting countries, including 24 energy-exporting EMDEs.

In a second step, regressions are estimated with three separate interaction terms to explore the role of vulnerabilities to financial crises: external debt in percent of GDP, current account balances in percent of GDP, and the presence of an inflation targeting regime.

References

McKibbin, W., and A. Sidorenko. 2006. “Modeling Macroeconomic Consequences of Pandemic Influenza.” Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, Australian National University, Canberra.

CHAPTER 4

Adding Fuel to the Fire: Cheap Oil during the Pandemic
The outbreak of COVID-19 and the wide-ranging measures needed to slow its advance have precipitated an unprecedented collapse in oil demand, a surge in oil inventories, and, in March, the steepest one-month decline in oil prices on record. In the context of the current restrictions on a broad swath of economic activity, low oil prices are unlikely to do much to buffer the effects of the pandemic, but they may provide some initial support for a recovery once these restrictions begin to be lifted. Like other countries, energy-exporting emerging market and developing economies (EMDEs) face an unprecedented public health crisis, but their fiscal positions were already strained even before the recent collapse in oil revenues. To help retain access to market-based financing for fiscal support programs, these EMDEs will need to make credible commitments to a sustainable medium-term fiscal position. For some of them, current low oil prices provide an opportunity to implement energy-pricing policies that yield efficiency and fiscal gains over the medium term.

Introduction

Since March, oil markets have been buffeted by an exceptional confluence of demand and supply shocks that have culminated in an unprecedented collapse in oil prices. The COVID-19 pandemic and the measures deployed to contain its spread—quarantines, travel restrictions, shutdowns of non-essential activities—have caused severe economic dislocations. Governments have responded with programs to mitigate personal hardship and disruptions to economic life, and central banks have cut policy rates and injected liquidity on an extraordinary scale. Many countries have nevertheless suffered deep economic contractions, with especially sharp reductions in travel and transportation—both heavily oil-intensive activities.

The collapse in energy demand came on the heels of delays of OPEC and the Russian Federation in extending a production agreement in early March. This was followed by outright production increases in some OPEC countries (World Bank 2020). A new agreement between OPEC and non-OPEC producers to curb production was reached in early April; however, prices fell further after the announcement. Coupled with the collapse in global energy demand, global oil inventories have risen steeply and, by June, remaining storage capacity may be limited (IEA 2020).

Oil prices have plummeted, recording their largest one-month fall on record in March (Figure 4.1).

By one measure, the European Brent spot price, the oil price fell by 85 percent between January 22, when the first human-to-human transmission of COVID-19 was announced, and its trough on April 21—more than at the height of the global financial crisis (70 percent from end-August to late-December 2008) and more than the plunge during the whole period of end-June 2014 to mid-January 2016 (77 percent). The West Texas Intermediate oil price fell into negative territory on April 20. Since then, Brent oil prices have regained some ground but, at around $30 per barrel on average in the first three weeks of May, remain less than half their January average and around the January 2016 trough of the oil price slide of 2014-16.

In the context of the current widespread and severe restrictions on economic activity to stem the spread of the pandemic, low oil prices are unlikely to provide much of a buffer for the global economy. Indeed, there are signs that low oil prices may even be compounding the damage being done by the pandemic by weakening the balance sheets of producers. However, high levels of inventories suggest that oil prices may remain low for some time, which may provide some initial support for the broader economic recovery once it gets underway.

Against this background, this chapter examines the likely implications of the 2020 oil price plunge by

Note: This chapter was produced by a team led by Franziska Ohnsorge and including John Baffes, Alain Kabundi, Gene Kindberg-Hanlon, Peter Nagle, and Collette Mari Wheeler, with research assistance from Kaltrina Temaj.

1 Another frequently used measure, the Dated Brent spot price, fell by 72 percent over this period, on par with the declines during these comparator periods for the global financial crisis and the 2014-16 price slide.

2 This reflected an expiring futures contract and no physical oil traded at negative prices.
PUTTING IT IN A HISTORICAL CONTEXT AND DRAWING LESSONS FROM THE EXPERIENCE OF EMERGING MARKET AND DEVELOPING ECONOMY (EMDE) ENERGY EXPORTERS AND IMPORTERS DURING THE 2014-16 PLUNGE. SPECIFICALLY, THE CHAPTER ADDRESSES THE FOLLOWING QUESTIONS:

- **What has been the source of the 2020 oil price collapse?**
- **How does it compare with earlier episodes?**
- **How will low oil prices likely affect the eventual recovery of EMDE energy exporters and importers?**

Contributions. This chapter adds to the literature in several ways. First, it is the first comprehensive analysis of the potential impact of the 2020 oil price plunge on EMDEs and the global economy. Second, it puts the current decline into historical context to allow an assessment of the severity of the plunge. Third, it draws policy lessons from previous episodes of sharp declines in oil prices to examine the implications of the current plunge for EMDEs.

Main findings. The chapter presents the following findings.

- **The steepest drop on record.** The collapse in oil prices in March was the steepest one-month drop on record. A precipitous decline in oil consumption in the context of still-robust production has led to a rapid buildup in oil inventories. By June, remaining storage capacity may be limited.
- **Predominantly demand-driven oil price decline.** The oil price plunge since late January mainly reflected a collapse in demand arising from the pandemic and the restrictions that were needed to stem its spread. Besides triggering a global recession, these restrictions severely disrupted travel and transport, which account for around two-thirds of oil demand. Oil demand is expected to decline by about 9 percent in 2020—an unprecedented plunge. Supply-side factors, in particular the initial delay in agreeing to limit production, added to downward pressures on oil prices.
• Output losses in energy-exporting EMDEs. This latest oil price plunge was preceded by six previous plunges over the past half-century. During past demand-driven episodes, energy exporters and importers suffered similar initial output losses (about 0.5 percent) that were unwound within three years. In supply-driven oil price plunges, however, energy importers did not witness robust growth pickups but energy exporters witnessed similar initial output losses as in demand-driven plunges and less than one-third of these losses had been unwound three years later. This lasting impact of supply-driven oil price plunges may reflect a reassessment of long-term prospects for energy exporters. Energy-exporting EMDEs with lower debt, more flexible exchange rates, and more diversified export bases suffered smaller short-term output losses.

• Potential support for global growth early in a recovery. As long as widespread restrictions continue to constrain economic activity across the global economy, low oil prices are unlikely to provide meaningful support to global growth. If anything, the current episode of low oil prices holds less promise for a sustained boost to global growth than past episodes of low oil prices since energy exporters entered the current episode with eroded fiscal positions and foreign exchange buffers to support their economies, after having drawn on them to weather the previous oil price plunge of 2014-16. That said, when current pandemic-related restrictions ease, excess inventories and low oil prices could provide some initial support for the revival of global economic activity.

• Need for policy action. Current low oil prices are an opportunity to review energy-pricing policies, including remaining energy subsidies. A carefully calibrated design, phasing, and communication of such reforms is critical for their success. For energy exporters, this most recent oil price decline is yet another reminder of the urgency to continue with reforms to diversify their economies. These include measures to strengthen competition, broaden fiscal revenue bases, and enhance fiscal and monetary policy frameworks.

Drivers of the oil price plunge

By one measure, the European Brent spot price, crude oil prices fell by 85 percent between January 22 (the date the first recorded human-to-human infection was announced) and their trough of $9 per barrel on April 21 before recovering in May to less than half their January average (Figure 4.1). The oil market has been hit by an unprecedented combination of demand and supply shocks. The pandemic, and the restrictions on business and personal activities imposed to stem its spread, have triggered a global recession, and a steep drop in the demand for oil (Chapter 3). Total oil demand fell by almost 5 percent in the first quarter of 2020, and is projected to decline 20 percent in the second quarter of 2020 (IEA 2020). This coincided with a delay in early March of OPEC and its partners (OPEC+) to agree an extension of their production cuts (World Bank 2020). Meanwhile, petroleum inventories have risen rapidly and are expected to reach near-full capacity in June (IEA 2020).

Demand decline resulting from lockdowns. The single largest factor driving the collapse in oil prices has been the sharp reduction in oil demand arising from government restrictions to stem the spread of the pandemic. Many countries have implemented wide-ranging travel bans, sharply reducing the number of flights. Stay-at-home orders and a widespread shift to remote working have caused the number of passenger journeys to plummet. For example, passenger journeys in China fell by three-fifths compared to their normal level in March, while subway journeys in New York fell by more than nine-tenths in April.

Another frequently used measure, the Dated Brent spot price, fell by 72 percent over this period, on par with the 70 percent decline during the global financial crisis (end-August to late December 2008) and the 76 percent decline during end-June 2014-mid January 2016. In late-April, the West Texas Intermediate oil price (a U.S. oil price benchmark) contract for delivery in May temporarily fell below zero on concerns about near-full U.S. storage capacity; however, no physical oil was traded at negative prices.
Drivers of the 2020 oil price plunge

Government restrictions to stem the pandemic have disproportionately disrupted travel and transport, which accounts for around two-thirds of global oil consumption. Global oil consumption has fallen steeply in the first half of 2020. The pandemic has also triggered a global recession that has sharply reduced oil demand. The initial failure to agree on an extension of the production agreement between OPEC and its partners in March (although agreement was achieved in April) added to price pressures.

Demand decline resulting from the economic downturn. The global recession currently unfolding, which is on track to be the steepest in the past eight decades, also reduces global consumption of oil. Declines in economic growth can lead to sharp falls in oil prices, because of the high income elasticity of demand for oil. Over the past two decades, a 1 percentage-point decline in income growth in the United States or China has typically been associated with a 13 and 10 percent fall, respectively, in global oil prices after one year.

Supply fluctuations. Oil markets have also been buffeted by production decisions by OPEC and its partners. Following several years of rapid growth in U.S. shale oil production and amid falling global oil demand, the production agreement among OPEC+ partners failed to be renewed in early March. This exacerbated the initial decline in prices and triggered a further 24 percent fall in prices the day after the announcement. In early April, OPEC and its partners announced a new agreement to cut production by a historically large 9.7 percent in May and June that would be unwound gradually. However, the size of the cuts was apparently insufficient to reassure markets that they would offset the decline in consumption, and oil prices fell further following the announcement.

Net effect: Oil price plunge in 2020 mostly demand-driven. A structural vector autoregression model helps decompose the oil price decline in 2020 into demand- and supply-driven factors (Annex 4.1). The decomposition identifies a
positive supply shock—such as would have been caused by the failure of the OPEC agreement in early March—as an event that lowers prices and at the same time raises both global oil output and industrial production. In contrast, a negative demand shock—such as would have been caused by travel restrictions or falling global growth—is an event that lowers oil prices amid falling oil output and industrial production. The decomposition suggests that two-thirds of the price decline in the six months ending in April 2020 has been due to falling demand.6

Comparison with previous periods of disruptions

This time, the widespread economic weakness and travel disruptions have been associated with a considerably steeper oil price collapse than similar episodes in the past (Figure 4.3). For 2020 as a whole, oil demand is expected to drop by an unprecedented 9 percent—more than twice as much as during any previous global recession or oil-specific demand slowdown.

Global recessions. Prior to this year’s event, there have been four global recessions over the past 70 years: 1975, 1982, 1991, and 2009 (Kose and Ohnsorge 2019; Kose, Sugawara, and Terrones 2020). In each of these episodes, there was a contraction in real per capita global output and broad-based weakness in multiple indicators of global economic activity.

During these recessions, oil prices (and other industrial commodity prices) fell. The sharpest declines occurred during the global financial crisis, when oil prices fell by nearly 60 percent over three months. In most of these recessions, oil prices remained below pre-recession levels for several years.

Oil consumption also typically fell during these episodes. The largest decline in oil consumption occurred in 1980-82, when consumption fell by a cumulative 9 percent from its peak in 1979. The supply-driven spike in oil prices in 1980, around the revolution in the Islamic Republic of Iran, contributed to the global recession in 1981-82, which further depressed oil consumption. In contrast, the two most recent recessions saw much smaller declines in oil demand. For the 2008-09 recession, this reflected the strong shift in global oil consumption towards China, which continued to grow robustly through the global financial crisis (Stocker et al. 2018).

Travel disruptions. Measures implemented in 2020 to limit the spread of the pandemic bear some similarities to the widespread travel disruptions in the aftermath of the terrorist attacks on the United States on September 11, 2001. U.S. airline passenger traffic fell by 30 percent in the immediate aftermath of the attacks, and remained as much as 7 percent lower after two years (Ito and Lee 2005). The attacks also resulted in a sharp

FIGURE 4.3 Oil markets during past recessions and travel disruptions

Travel disruptions in the aftermath of the 2001 terrorist attacks on the United States contributed to a decline in oil prices. During global recessions, oil prices tended to fall, with the largest declines in the current global recession.

A. The y-axis is a price index, with “100=t” indicating prices at the start of the events. The x-axis shows the passage of time (in days). Start dates for the two events are the first trading day before a major event occurred: September 10, 2001, for 9/11; and January 22, 2020, for COVID-19. Swath shows the four global recessions: 1974-75, 1981-82, 1990-91, and 2008-09. For the first two recessions, daily data were unavailable, so monthly percent changes were taken (assuming each month lasts 22 working days).

B. Dates of recessions are taken from Kose, Sugawara, and Terrones (2020). The four recessions included are: 1974-75; 1981-82; 1990-91; and 2008-09 "Before" shows average annual growth rates in commodity consumption over the three years prior to the recession. "During" shows average annual growth rates of recession years. Note that in 1980 a global slowdown occurred with similar negative growth rates in consumption; as such the "Before" period covers 1977-79. Click here to download data and charts.

6 In contrast, other research finds that only around one-third of the fall in oil prices can be attributed to demand conditions, while supply factors explain most of the remainder of the fall (Groen and Nattinger 2020). Instead of industrial production as a proxy for oil demand, these other models use asset prices which have considerably more resilient than real activity indicators (in part reflecting monetary policy measures). If anything, other factors, in particular the widespread anticipation of a failure in negotiations, point to an even greater role of demand than estimated here.
spike in uncertainty and prolonged the recession following the dot-com collapse in the United States, and hence the slowdown in global activity.

In the aftermath of the 9/11 attacks, oil prices fell sharply (by one-third over the following two months), while other commodity prices were largely unaffected. Travel disruption disproportionately affected oil consumption but heightened uncertainty and slowing growth also weighed on oil demand. However, the oil price decline was short-lived: within six months, oil prices had returned above their pre-attack levels. Oil consumption growth averaged close to zero in the three quarters following the attacks, down from an average of 1.5 percent (y/y) in the previous four quarters.

Implications of oil price plunges for the global economy

Other things being equal, low oil prices might be expected to help boost global growth, including by stimulating energy-intensive activities such as travel and transportation. Moreover, by dampening inflation, lower prices would also give central banks more room to ease monetary policy (Baffes et al. 2015; Ratti and Vespigniani 2016). However, these effects would vary across countries: energy exporters in particular would suffer real income losses, which would dampen consumption and investment.

In practice, however, all of the oil price plunges since 1970 have been accompanied by global recessions, global slowdowns and, in some cases, widespread financial crises. Three reasons may account for this.

- **Sources.** Many of the past oil price plunges were themselves responses to economic downturns rather than independent shocks that might have triggered upturns (Cashin, Mohaddes, and Raissi 2014; Kilian 2009; Peersman and Van Robays 2012).
- **Timing.** During oil price plunges, the output losses in energy exporters materialized more quickly than output gains in energy importers, resulting in short-term global growth slowdowns (de Michelis, Ferreira, and Iacovelli, forthcoming).
- **Asymmetries.** Uncertainty, frictions, and asymmetric monetary policy responses can create asymmetries that increase the damage to energy exporters compared with the benefits to energy importers.

Past oil price plunges

- **Drivers.** Oil price plunges in 1990-91, 1998, 2001, and 2008-09 were one-half (1998) to entirely (2008-09) demand-driven, whereas the oil price plunges of 1985-86 and 2014-16 were four-fifths and two-thirds supply-driven, respectively (Figure 4.2).
- **Persistence.** Oil price plunges associated with global slowdowns were short-lived (1998, 2001), with oil prices regaining their pre-plunge levels in less than four years. In contrast, oil price plunges around global recessions (1990-91, 2008-09) and largely supply-driven plunges (1985-86, 2014-16) were followed by more prolonged periods of low prices (Figure 4.4).

7 Depending on the source of the fall in oil prices, it may also depress equity markets (Kang, Ratti, and Vespigniani 2016).

8 The long-term benefits that may have ensued go beyond the scope of this section.

9 See Hamilton (2011); Hoffman (2012); Jimenez-Rodriguez and Sanchez (2005); and Jo (2014).

10 The 1990-91 plunge was almost equally demand- and supply-driven. It reflected a global recession as well as an unwinding of supply concerns triggered by Iraq’s invasion of Kuwait. This episode differs from others in that it unwound a short-lived price spike at the beginning of the first Gulf War whereas other episodes followed extended periods of price increases or price stability.
• **Depth.** Similarly, oil price plunges associated with global slowdowns (1998, 2001) were shallower than those around global recessions (2008-09, 1990-91) or those associated with largely supply-driven plunges (1985-86, 2014-16). The oil price plunge of 2014-16 was particularly protracted.

Impact of past plunges. Most of these plunges were triggered by weakening global growth, which contributed to the decline in oil prices, and were followed by slow recoveries (Annex 4.2). Although virtually all episodes of significant oil price declines since 1984 have been accompanied by monetary policy loosening in advanced economies, several were accompanied or followed by financial market strains.

Empirical estimates. A local projections model is estimated for 155 EMDEs, of which 36 are energy exporters, for 1970-2018 (Annex 4.3). The model estimates the response of real output, investment, and consumption to the seven oil price plunges described above over the following five years. It distinguishes between demand-driven (1998, 2001, 2008-09) and supply-driven oil price plunges (1985-86, 2014-16).

• **Demand-driven versus supply-driven oil price plunges.** EMDE output evolved differently in demand-driven and supply-driven oil price plunges. In the first year of both supply- and demand-driven oil price plunges, EMDE output fell by about 0.5 and 0.3 percent, respectively (Figure 4.5). The recovery, however, differed: output recovered after demand-driven oil price plunges and, three years later, had returned to the baseline; after supply-driven oil price plunges, EMDE output did not recover and remained below the baseline three years later.11

11 Based on vector autoregression models, existing studies find wide ranges of impacts. A demand-driven 30 percent oil price decline reduces output by 0-5 percent over a year or two, an oil-specific demand decline reduces output by 0.3-4 percent over a year or two, and a supply-driven oil price decline reduces output by 0-15 percent over a year or two. These studies include Aastveit, Bjørland, and Thorstd (2015); Baumeister and Hamilton (2019); Baumeister and Peersman (2013); Cashin, Mohaddes, and Raissi (2014); Kilian (2009); Kilian and Murphy (2014); Mohaddes and Raisi (2019); and Peersman and Robays (2012).

FIGURE 4.4 Oil market developments during past oil price plunges

The oil price plunge in 2020 is only the latest in a series of plunges since 1970. During two of these (1985-86, 2014-16), supply remained robust or increased as did demand. During three others (2000-01, 2008-09, 1997-98), demand dropped sharply and, in response, production was reined in.
In demand-driven plunges, similar patterns emerged but differences were less pronounced and there was wide heterogeneity between countries.

The 2014-16 oil price plunge

In late 2014, the 50 percent decline in oil prices between June and November 2014 was expected to lift global GDP by around 0.3-0.7 percent (Arezki and Blanchard 2014). The cheaper cost of a critical input into global production was expected to raise global activity, and the transfer of income and wealth from energy-exporting economies with higher savings rates to energy-importing economies, with higher propensities to spend, was also expected to boost global demand (Baffes et al. 2015; World Bank 2015a). While lower oil prices were expected to depress investment in the oil industry, this was expected to be more than offset by the boost to consumption and energy-intensive sectors (transportation, manufacturing, and agriculture).

However, the expected “shot in the arm” to global growth was slow to materialize. Instead, in 2016, global growth slowed to a near-post-crisis low of 2.6 percent. Global growth only picked up in 2017-18 once considerable policy stimulus was put in place in major economies. The disappointing short-term growth trajectory reflected several factors.

12In demand-driven plunges, similar patterns emerged but differences were less pronounced and there was wide heterogeneity between countries.
Output and investment slump in energy exporters. The impact of the oil price plunge of 2014-16 on commodity exporters was severe. Growth slowing in more than 70 percent of energy-exporting EMDEs in 2015 and 2016, with many facing declining consumption and investment (Figure 4.6). Since energy-exporting countries are generally less diversified than other commodity exporters, they are particularly vulnerable to oil price declines (Aslam et al. 2016).

- **Fiscal policy tightening in energy exporters.** Many EMDE energy exporters, relying heavily on hydrocarbon revenues, were forced to tighten fiscal policies to realign spending with revenues, despite rising economic slack and diminishing long-term growth prospects. Some were able to at least partially mitigate exchange rate and fiscal pressures by drawing on sovereign wealth funds (World Bank 2015a).

- **Monetary policy tightening in energy exporters.** Fiscal policy tightening was often compounded by monetary policy tightening, and exchange rate market intervention to support currencies or currency pegs. As foreign reserves eroded, several countries eventually adopted more flexible exchange rate regimes as part of the adjustment to low oil prices. A small number of countries with severe liquidity pressures resorted to unconventional measures (Sommer et al. 2016).

Adverse spillovers from the slowdown in energy exporters. Headwinds in Russia and the Gulf Cooperation Council (GCC) economies reduced within-region flows of trade, remittances, foreign direct investment, and official grants (World Bank 2015a, 2016c). Energy-exporting low-income countries (Chad, South Sudan) were hit particularly hard, as the effect of the oil price shock was exacerbated by conflict and deteriorating security conditions.

FIGURE 4.6 Impact of 2014-16 oil price plunge on energy exporters

The oil price plunge of 2014-16 forced many energy exporters into procyclical fiscal and monetary tightening. Market intervention to support currencies caused a substantial decline in foreign exchange reserves. Those with more flexible exchange rates and greater export diversification had milder output losses.

A. Cumulative output increase for energy-exporting EMDEs, 2014-16

<table>
<thead>
<tr>
<th>Index, 100=2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>90</td>
</tr>
</tbody>
</table>

B. Share of energy-exporting EMDEs with increasing/decreasing growth

C. Foreign exchange reserves and nominal effective exchange rate appreciation of energy exporters, 2014-16

<table>
<thead>
<tr>
<th>Index, 100=January 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>90</td>
</tr>
</tbody>
</table>

D. Change in fiscal balance in energy exporters, 2014-16

<table>
<thead>
<tr>
<th>Index, 100=October 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>90</td>
</tr>
</tbody>
</table>

Source: Bank for International Settlements; Haver Analytics; International Monetary Fund; United Nations Conference on Trade and Development (UNCTAD); World Bank.

A.C.D. Unweighted averages. Whiskers indicate minimum-maximum ranges.

A. “Above average concentration” and “below average concentration” groups are defined by countries above or below the sample average for export concentration in 2016. Concentration index measures the degree of product concentration, where values closer to 1 indicate a country’s exports are highly concentrated on a few products. The average for the sample is 0.6, where 1 is the most concentrated. Exchange rate classification is based on the IMF’s Annual Report on Exchange Arrangements and Exchange Restrictions database, in which countries are ranked 0 (no separate legal tender) to 10 (free float). “Pegged” refers to countries with either a hard or soft peg, which is denoted by a ranking of 1 to 6, while “floating” denotes those with rankings of 7 to 10 and includes countries with horizontal bands and other managed arrangements. Sample includes 34 (exchange rate) or 34 (concentration) energy-exporting EMDEs.

B. Aggregate growth rates calculated using GDP weights at 2010 prices and market exchange rates. Increasing/decreasing growth are changes of at least 0.1 percentage point from the previous year. Countries with a slower pace of contraction from one year to the next are included in the increasing growth category.

C. Nominal effective exchange rate and foreign reserve levels indexed to 100 in January 2014. Change in official reserve assets from 2014 to 2016. Last observation is December 2016.

D. Sample includes 38 oil-exporting EMDEs (excludes Albania, Brunei Darussalam, Ghana, Libya, Myanmar, South Sudan, and Turkmenistan). Change in overall fiscal balance is measured from 2014-16. “Above average” and “below average” oil revenue groups are defined by countries above or below the sample average of oil revenues as a share of GDP based on 2014 data.

Click here to download data and charts.

13 See Danforth, Medas, and Salins (2016) and World Bank (2016a, 2016b, 2017a). The effects of the price shock were also exacerbated by idiosyncratic factors, including sanctions on Russia and conflict and geopolitical tensions in the Middle East and North Africa region.
Stalled recovery in energy-importing EMDEs and advanced economies. Growth also slowed in most energy-importing economies in 2015-16 (Figure 4.7).

China’s energy mix and rebalancing needs. China is the second-largest oil importer in the world, but the share of oil in its overall energy consumption is the lowest among G20 economies. Regulated fuel costs and a low energy and transportation weight in consumer baskets limit real income gains for consumers from lower oil prices (World Bank 2015a). The oil price plunge also coincided with a policy-guided near halving of investment growth, which tends to be resource-intensive, to ease growth to a more sustainable level.\(^\text{14}\)

Lower sensitivity of other energy-importing EMDEs to oil shocks. Activity in energy-importing EMDEs is less responsive to oil price shocks than that in major advanced economies (Aastveit, Bjørnland, and Thorsrud 2014; Caldara, Cavallo, and Iacoviello 2019). This reflects less oil-intensive energy mixes, less energy-intensive consumption, and energy price controls that limit the pass-through of world prices to domestic retail prices. In addition, many countries seized the opportunity to lower energy subsidies (Box 4.1). While this improved fiscal and external positions, it dampened the benefit to activity in energy-importing EMDEs.

- **Policy tightening in energy-importing EMDEs.** A number of non-oil commodity exporters and commodity importers raised monetary policy rates during 2015–16 to stem currency depreciation. Others reacted to above-target inflation. In some cases, fiscal deteriorations amid slow growth reduced government revenues and required spending cuts.

- **Investment in the United States.** In the United States, the boost to private consumption from lower oil prices was partly offset in the short run by a sharper-than-expected contraction in capital spending in the energy sector (Baumeister and Kilian 2016a). This investment is highly price elastic (Bjørnland, Nordvik, and Rohrer 2017; Cakir Melek 2018; Newell and Prest 2019): mining investment halved in the two years that followed the mid-2014 oil price plunge, lowering growth by 0.2 percentage point in both 2015 and 2016.

The 2020 oil price plunge

Low oil prices are likely to provide, at best, temporary initial support to growth once restrictions to economic activity are lifted and until excess inventories are unwound. In the very short term, restrictions to stem the pandemic are likely to close off the main channel for low oil prices to benefit growth, by limiting transport and other energy-intensive activities. However, even once these restrictions are lifted and energy demand recovers, the current demand-driven oil price plunge is likely to be associated with deep and lasting output losses. More than in previous demand-driven oil price plunges, the adverse impacts on energy exporters—regardless of whether they are advanced economies or

\(^{14}\)See Huidrom, Kose, and Ohnsorge (2017); Kang and Liao (2016); and World Bank (2016a).
The 2014-16 oil price plunge forced many energy exporters into procyclical fiscal tightening that deepened their downturns. Many energy exporters recognized an urgent need to render both their economies and their public finances more resilient, and embarked on reforms to encourage diversification, strengthen non-oil revenues, and cut poorly targeted subsidies (Stocker et al. 2018; Figure 4.1.1). Energy-importing EMDEs also seized the opportunity of low oil prices to cut energy subsidies. This box examines these reforms in greater detail, answering the following two questions:

- Which reforms did EMDE energy exporters embark on?
- Which reforms did EMDE energy importers embark on?

Reforms in energy exporters

Energy exporters initiated economic diversification programs, energy subsidy reforms, and measures to strengthen non-energy government revenues.

Diversification programs. Before the current plunge in oil prices, hydrocarbon sector activity represented more than one-third of GDP in a number of countries in Central Asia, Sub-Saharan Africa, and, in particular, the Middle East. Oil production represented the majority of government revenue and exports in most energy-exporting EMDEs in 2013. This suggests an untapped potential for greater diversification of exports and government revenues, which would bolster long-term growth prospects and improve these economies’ resilience to external shocks (Hesse 2008; IMF 2016; Lederman and Maloney 2007).

Following the 2014-16 oil price collapse, several large energy-exporting EMDEs laid out medium- to long-term plans to reduce their reliance on the energy sector. As part of Saudi Arabia’s 2016 Vision 2030 plan, the National Transformation Program targeted an increase in non-oil commodity exports and non-oil government revenues (Kingdom of Saudi Arabia 2016; World Bank 2016c).

Saudi Arabia’s fiscal non-oil revenues improved from 7.7 percent of GDP in 2016 to 10 percent of GDP in 2019. Nigeria identified several sectors to promote greater diversification of export earnings and government revenues (Nigeria Ministry of Budget and National Planning 2017). Kazakhstan’s “100 Concrete Steps” program, adopted in 2015, aimed to diversify the economy and improve competitiveness and transparency. By the start of 2020, Kazakhstan has completed more than half of these 100 steps, including efforts to improve governance. However, efforts to boost industrialization have encountered challenges, while plans to increase private land ownership have been delayed.

Efforts to encourage diversification have continued and include: reducing labor market rigidities (for example, Saudi Arabia, Oman, Qatar), supporting foreign and private investment (for example, Saudi Arabia), expanding infrastructure investment (for example, Malaysia), improving the business environment (for example, Algeria, Brunei Darussalam, the GCC countries, Kazakhstan, Nigeria, Russia), expanding deeper trade integration within the Eurasian Economic Union (for example, Russia), and strategic investment plans in renewables energy (Azerbaijan, the GCC countries). However, in some cases, the structural reform agenda has faced legislative or implementation delays (for example, Algeria, Kazakhstan).

Energy subsidy reform. The sharp reduction in government revenues among energy-exporting EMDEs led to an increased emphasis on reducing energy subsidies to restore fiscal space, discourage wasteful energy consumption, and reallocate spending to programs that better target the poor (IMF 2017b). Between mid-2014 and end-2016, more than half of energy-exporting EMDEs reformed energy subsidies, including countries in the Middle East and North Africa, Sub-Saharan Africa, East Asia, Latin America, and Central Asia. A number of energy exporters have also reduced utility subsidies

Note: This box was prepared by Collette Mari Wheeler, with research assistance from Kaltrina Temaj.

1 Energy subsidies were reformed between mid-2014 and late 2017 in Algeria, Bahrain, Cameroon, Ecuador, Gabon, Ghana, the Islamic Republic of Iran, Iraq, Kazakhstan, Kuwait, Malaysia, Nigeria, Oman, Qatar, Saudi Arabia, Sudan, Trinidad and Tobago, Turkmenistan, the United Arab Emirates, and Yemen. Reforms in Angola, Indonesia, and Nigeria, were, however, not sustained once oil prices rose.
Although, during the COVID-19 pandemic, subsidies were raised again in some countries (for example, Gabon, Indonesia, Oman, Saudi Arabia, United Arab Emirates).

In some cases, subsidy reform was a significant break from past policy (Krane and Hung 2016; World Bank 2017b). Encouragingly, the design and implementation of recent energy subsidy reforms have been superior to past efforts, which were poorly phased and hampered by insufficient communication to the public about the rationale for reform (Asamoah, Hanedar, and Shang 2017; Clements et al. 2013). In many cases, recent reforms have also helpfully included measures to mitigate the impact on the poor and to strengthen social safety nets (for example, Algeria, Angola, Saudi Arabia). More recently, Nigeria announced plans to eliminate energy subsidies. However, revenue-enhancing energy price reforms have remained absent in some countries (for example, Cameroon).

Fiscal reforms. Several countries have implemented tax reforms to compensate for the loss of government revenues and to insulate themselves from future oil price fluctuations (World Bank 2018c). This has included the introduction of taxes on goods and services or value-added taxes (for example, Bahrain, Malaysia, Saudi Arabia, the United Arab Emirates), as well as raising existing VAT or excise tax rates (Bahrain, Colombia, Oman, Saudi Arabia, United Arab Emirates). Russia has implemented a fiscal rule that targets a primary deficit of 0.5 percent of GDP at the benchmark oil price of $40 per barrel (in 2017 U.S. dollars). Any excess fiscal resources that are generated from higher oil prices are saved in the National Welfare Fund. The assets from this fund have already helped Russia support its economy and extend benefits to vulnerable households during the recent pandemic. However, implementation of fiscal reforms has stalled in some cases (for example, Kuwait, Oman, Qatar), while exemptions have limited revenue growth in some others (Malaysia).

Reforms in energy importers

Energy subsidy reform. Like energy-exporting EMDEs, energy-importing EMDEs took advantage of declining oil prices to begin dismantling energy subsidies, which tend to disproportionately benefit those with higher incomes. In addition, they can crowd out public investment and encourage more intensive use of fossil fuels (Arze del Granado, Coady, and Gillingham 2012). Several countries have implemented such reforms in response to the 2014-16 oil price plunge (for example, China, the Arab Republic of Egypt, Mexico, Morocco, Tunisia), but slippages in implementation have occurred in some cases (for example, Egypt, Mexico).

In response to the COVID-19 pandemic, some governments have provided fuel price discounts to some sectors (for example, Egypt) or increased subsidies to vulnerable households (for example, Guatemala, Montenegro, Ukraine).

Other reforms. Other reforms have aimed to raise revenues, with some countries increasing taxes on energy or energy-dependent sectors such as transportation (for example, Bangladesh, China, Egypt, Mozambique, Rwanda, South Africa, Vietnam; IEA 2015; IMF 2016; Kojima 2016). These steps also included measures to avoid energy subsidies reemerging if oil prices rebound—automatic pricing mechanisms or full energy price liberalization have been common (for example, China, Côte d’Ivoire, India, Jordan, Madagascar, Mozambique, Mexico, Thailand, Ukraine; Asamoah, Hanedar, and Shang 2017; Beylis and Cunha 2017).

Conclusion

Remaining challenges. Some of these policies have yet to bear fruit. Notwithstanding fiscal and energy subsidy reforms in energy exporters, fiscal break-even prices—the oil prices at which government budgets are balanced—in almost all energy-exporting EMDEs exceed current prices, often by considerable margins. Energy subsidies still represented an average of 4 percent of GDP as of 2018 among energy-exporting EMDEs, many of which implemented reforms 2014-16 (Figure 4.1.1). In 2019, the share of commodity exports in total goods exports remained as high now as in 2013, before the last oil price plunge. The recent oil price plunge may provide further momentum to proceed with planned reforms and deepen them once the immediate health crisis subsides. Energy importers, in contrast, should take advantage of lower energy prices to lower subsidies—which averaged over 2.5 percent of GDP in 2018—and utilize these resources to finance urgent health care needs. In energy exporters and importers alike, there is an opportunity to put in place reforms now that are non-binding in the short term but address long-standing inefficiencies and fiscal costs in the long term.

2 Mexico has a diversified export base and, hence, is classified as an energy importer.

3 In Mozambique, the elimination of fuel subsidies, the introduction of an automatic fuel price adjustment, and increased tariffs on electricity and public transportation, contributed to the 2 percentage points of GDP narrowing of the primary fiscal balance between 2016 and 2018.
Fiscal space generated by subsidy reforms. Replacing energy subsidies with expanded and better-targeted social safety nets, coupled with structural reforms, can improve fiscal positions while supporting low-income households. Policies to reduce subsidies can help promote growth because fiscal savings generated by lower subsidies can fund productivity-enhancing education and infrastructure. For example, in Egypt, fiscal savings from the energy subsidy reforms were redirected towards social spending (ESMAP 2017b). These policies can also foster low-carbon transition and promote green energy (Monasterolo and Raberto 2019; Mundaca 2017). For energy-exporting EMDEs, eliminating costly energy subsidies could help offset the collapse in revenue from oil extraction given that oil prices are well below their fiscal breakeven points.

Increasing the chances of success of subsidy reform. Energy subsidy reform raises formidable political-economy challenges (Inchauste and Victor 2017). The different prongs of reforms, however, need to be carefully sequenced and communicated to avoid delays, social unrest or reversals, as has been the experience in some client countries (for example, Ecuador; Worley, Pasquier, and Canpolat 2018). Reforms may prove more lasting if a few principles are observed in their implementation.

- **Entrenching reform.** Reforms formally embedded in legislation may be more likely to be enforced and sustained once oil prices rise again.
- **Transparency.** Reforms are more likely to be sustained if price setting can be de-politicized (Inchauste and Victor 2017). This can be achieved with a transparent formula for setting energy prices.
- **Frequent price adjustments.** A formula with more frequent price adjustments can help avoid larger and more disruptive price changes, especially once oil prices return to more normal levels.
- **Tax design for price stability.** A transparent formula for frequent price adjustments can be accompanied by combination of fixed and variable taxes that can smooth price volatility, such as in the case of Chile.
- **Supporting reforms.** Subsidy cuts that are accompanied by cuts in the cost of other household public services, such as school or public transport fees, or increases in other social benefits can help build public support for reform. In India, for example, the removal of price controls was accompanied by targeted cash transfers and in Brazil by targeted assistance to low-income households for energy conservation (Deichmann and Zhang 2013). Such supporting reforms need to be accompanied by improved capacity to implement benefit programs (Inchauste and Victor 2017).
EMDEs—may outweigh benefits to activity in energy importers. Adverse effects are likely to be compounded by new headwinds, including elevated macro-financial vulnerabilities that were less relevant in previous oil price plunges, or even a second wave of infections. That said, there might be a short window early in the recovery when still-high inventories depress prices and support activity.

Implications of the demand-driven nature of oil price plunge. In contrast to the oil price plunge of 2014-16, the 2020 episode has been mainly driven by a collapse in energy demand resulting from restrictions to stem the spread of the pandemic and the global recession (Figure 4.1). Once the global recovery is underway, and excess inventories are unwound, oil prices would be expected to increase again in tandem with global growth.

BOX 4.1 Reforms after the 2014-16 oil price plunge (continued)

- **Public awareness.** Awareness campaign can highlight the benefits of subsidy reforms, in terms of giving greater room for higher-priority spending, and thus raise public support for reform (El-Katiri and Fattouh 2017).

Role of competition, legal and regulatory frameworks. Improving the macroeconomic framework and competitive environment can be more effective in improving the financial positions of both consumers and producers than energy subsidies. Carefully designed and properly enforced antitrust laws and consumer protection legislation are essential components of institutional frameworks that support market mechanisms. A sound legal and regulatory framework favoring competitive markets provides a more effective response to many of the problems that subsidies attempt to address. For example, the removal of price controls and barriers to entry in the transportation sector significantly increased competition and lowered transportation costs in Rwanda (Teravaninthorn and Raballand 2009). Even in the case where incumbent firms maintained outsized market shares, the presence of competition and the potential for new entrants significantly lowered their markups.

Energy pricing reform. Even in EMDEs where energy subsidies have been eliminated, the current low oil prices provide an opportunity to introduce carbon pricing and other energy taxation that will discourage inefficient consumption as global oil prices rise again. As a cost-effective instrument for meeting climate targets, 57 initiatives (including 28 emission trading systems) were implemented at the national and subnational level in 2019, covering about 20 percent of global greenhouse gas emissions (World Bank 2019a). Existing carbon pricing is considered insufficient to meet climate targets, so policymakers should seize the current opportunity of exceptionally low energy prices to put in place pricing formulas now that encourage more energy-efficient growth once the recovery gathers momentum (World Bank 2019a). Finally, support measures for energy-intensive industries during the current pandemic could be made contingent on improvements in fuel efficiency.

Coincidence with other shocks. The public health crisis, unprecedented capital outflows from EMDEs, and a collapse in global trade and tourism have put financial and economic pressures on energy exporters and importers alike (Figure 4.8).

- **Public health crisis.** The number of confirmed infections has soared in energy-exporting EMDEs, as well as energy-importing EMDEs, and the effect of the sharp loss in consumer and investor confidence may linger long after the pandemic has subsided.

- **Trade collapse.** Global manufacturing activity, tourism, and trade have plunged amid closures of non-essential services, shops, factories, and public spaces; stay-at-home orders travel restrictions; and a high degree of risk aversion of consumers (Chapter 1).

- **Tightening financial conditions.** Flight to safety has resulted in a sharp tightening of financial conditions in EMDEs (Chapter 1). Global equity markets have fallen sharply, with

15 The 2014-16 oil price plunge is a reminder that this will also be a challenge, although to a lesser extent, in energy importing economies with sizable energy sectors.
Obstacles to policy effectiveness in EMDEs. Many central banks and governments have engaged in large-scale monetary and fiscal stimulus to support their economies amid the pandemic (Chapter 1). However, these may not reach the most vulnerable groups. This is of particular concern for economies with widespread informality. Large sections of their population do not have bank accounts, which would usually provide a means for delivering direct cash support quickly. By the same token, many people are outside the formal social benefit and tax system, and would not benefit from tax deferments and cuts, or from higher regular social benefits (Chapter 3).

Macro-financial vulnerabilities in energy exporters. During the oil price plunge of 2014-16, energy exporters with highly concentrated export and revenues bases, weak fiscal positions, and fixed exchange rates witnessed considerably steeper growth slowdowns. In today’s context, these effects are likely to be more pronounced since there has been limited progress in export diversification, and fiscal positions are weaker than they were before the 2014-16 oil price plunge.

In 2014-16, growth in energy exporters with a higher degree of economic diversification (for example, Bahrain, Ghana, Malaysia, Qatar), and a floating exchange rate regime (for example, Albania, Russia), recovered more quickly from the fall in oil prices than in those with low diversification and fixed exchange rates. Fiscal balances also fared better in energy-exporting EMDEs with more flexible exchange rate regimes, in part because real exchange rate depreciation mitigated revenue declines and spurred needed adjustment within the private sector. Growth remained stronger in energy exporters with larger foreign reserves and low historical inflation volatility (Grigoli, Herman, and Swiston 2017; World Bank 2016a). The need for fiscal adjustment was greater in energy-exporting EMDEs that lacked the necessary buffers (Husain et al. 2015; World Bank 2015b). Energy-exporting EMDEs with higher reliance on oil-related revenues faced a more pronounced deterioration in fiscal balances than in those economies that managed to diversify government revenue away from oil before 2014.

Energy exporters remain highly reliant on commodity exports and have more precarious fiscal positions (Figure 4.9). In 2019, the energy sector continued to account for 12 percent of government revenues in the average energy-exporting EMDE. Government debt in energy-

FIGURE 4.8 Pandemic and mitigation measures in EMDE energy exporters

The pandemic is spreading in energy-exporting and energy-importing EMDEs. In response, governments have imposed restrictions that curtail economic activity. The impact on informal activity may be particularly adverse.

A. Number of reported infections in EMDEs

B. Number of COVID-19-related fatalities in EMDEs

C. Stringency of mitigation measures

D. Share of informal economy in EMDEs

Source: European Centre for Disease Prevention and Control (ECDC); OurWorldInData.org; Oxford COVID-19 Government Response Tracker; World Bank.

B. The Oxford COVID-19 Government Response Tracker collects publicly available information on 11 indicators of government response including school closures, public events cancellations, and public information campaigns, as well as fiscal and monetary measures and emergency investment in health care. The index ranges between 0 and 100 where higher indicates more stringent measures.
C. Aggregate growth rates calculated using GDP weight at 2010 prices and market exchange rates. To correct for data gaps, data is extended with the most recent observation. Sample includes 121 EMDEs, of which 33 are energy exporters.
D. 2016 data used for share of GDP; 2014 data used for share of employment.

Click here to download data and charts.
FIGURE 4.9 EMDE energy exporters’ vulnerabilities: 2014-16 and 2019

Today’s energy-exporting EMDEs are typically no less reliant on energy exports than in 2013, and have more precarious fiscal positions.

A. Resource sector activity in energy-exporting EMDEs
B. Export concentration
C. Share of energy revenues in government revenues of energy-exporting EMDEs
D. Commodity export share of energy exporters
E. Government and corporate debt of energy exporters
F. Fiscal balance of energy exporters

Sources: Haver Analytics; International Monetary Fund; United Nations Conference on Trade and Development (UNCTAD); World Bank.

A.C. EAP=East Asia and Pacific, ECA = Europe and Central Asia, LAC = Latin America and the Caribbean, MNA = Middle East and North Africa, and SSA = Sub-Saharan Africa.
A. Regional aggregates are medians. Sample includes 34 energy-exporting EMDEs. Chart shows resource rents in percent of GDP.
B. Orange diamonds denote the median and blue bars represent the interquartile range of individual country groups. Sample includes 33 energy-exporting EMDEs, 118 energy-importing EMDEs, and 35 advanced economies. Concentration index measures the degree of product concentration, where values closer to 1 indicate a country’s exports are highly concentrated on a few products.
C. Regional aggregates are medians. Sample includes 24 energy-exporting EMDEs (Algeria, Angola, Azerbaijan, Bahrain, Bolivia, Cameroon, Chad, Colombia, Republic of Congo, Ecuador, Equatorial Guinea, Gabon, Iran, Iraq, Kazakhstan, Kuwait, Nigeria, Oman, Qatar, Russia, Saudi Arabia, Sudan, Trinidad and Tobago, and the United Arab Emirates).
D. Blue bars show share of commodities in total goods exports. Orange whiskers show the minimum-maximum range.
E.F. Blue bars show unweighted averages. Orange whiskers show the interquartile range.
Click here to download data and charts.

exporting EMDEs had risen to 50 percent of GDP in 2019 from 27 percent of GDP in 2013, and the fiscal balance has turned from near-balance in 2013 to a deficit of 2.7 percent of GDP in 2019 (IMF 2017a; World Bank 2017a). As a result, even after the public health crisis subsides, the need to shore up public finances is likely to weigh on their recovery.

Conclusions

The restrictions imposed to stem the pandemic and the global recession triggered by the outbreak of the COVID-19 pandemic have been accompanied by an unprecedented collapse in oil demand and prices. Unfortunately, the price decline is unlikely to provide much of an immediate buffer for global growth, because of the impact of mitigation measures that are constraining energy-intensive activities and because energy-exporting EMDEs have less fiscal and monetary policy room to counter the impact on their economies. That said, there might be a short window early in a recovery when still-high inventories depress prices and support activity.

Currently, responding to the health emergency and its impact on economic activity remains the immediate priority. In both energy exporters and importers, support measures could focus on boosting health infrastructure and capacity, in addition to protecting employment and social safety nets. To alleviate the burden on fiscal balance sheets, energy exporters and importers with high debt levels may want to preemptively identify priority expenditures that need to be safeguarded if financing shrinks, as well as lower-priority, poorly targeted, or inefficient spending programs that can be delayed or suspended. Additional liquidity could be injected in economies with low and stable inflation to enable banks to extend credit to firms and households, and to prevent widespread insolvency.

The economic damage of the pandemic could be long lasting, as it will take considerable time to repair the disruptions to labor markets, value chains, and balance sheets, and to restore consumers’ confidence in the safety of retail, leisure, and work spaces (Chapter 3). Economic
ANNEX 4.1 Methodology: Decomposition of oil price movements

Methodology. A structural vector autoregression (SVAR) as in Kilian and Murphy (2014) is used to model global oil prices. The SVAR includes the logarithms of global oil production, global oil prices, global industrial production, and OECD inventories. Three shocks are identified using a combination of sign restrictions on impact responses and on the impact price elasticity of oil demand.

- **Sign restrictions.** A negative demand shock is identified as a shock that lowers oil prices while lowering global industrial production and global oil production. A positive supply shock is identified as a shock that lowers oil prices while raising oil production and industrial production. A positive speculative demand shock (the residual in Figure 4.2.F) is identified as one that raises oil inventories, increases prices and oil production, and reduces industrial production.

- **Elasticity restrictions.** Restrictions are imposed on the short-run price elasticity of oil demand. The impact price elasticity of demand is assumed to be non-positive; the median draw in the range -0.2 to -0.1 is used, in line with estimates of the elasticity since the 1980s in Baumeister and Peersman (2013).

Data. The data set uses monthly data from January 1980 to April 2020. Global industrial production is the production-weighted average of industrial production in 31 advanced economies and 47 EMDEs (unbalanced sample depending on availability). Data for industrial production in April is estimated as the level predicted by the global manufacturing purchasing managers’ index. Global oil production is from the International Energy Agency (IEA) from 1987-2020 and the U.S. Energy Information Administration (EIA) from 1980-86. Oil prices are the unweighted average of Brent, West Texas Intermediate, and Dubai crude oil prices from the World Bank’s Pink Sheet (measured in U.S. dollars). OECD inventories use IEA data from 1991-2020 and EIA data from 1987-1990. In April 2020 and prior to 1987, percent changes in U.S. inventories are used as a proxy for changes in OECD inventories (U.S. stocks account for around one-third of total OECD inventories).

ANNEX 4.2 Oil price plunges since 1970

Until 2020, there had been six previous oil price plunges since 1970 when oil prices fell by 30 percent or more over a six-month period.

- **1985-86.** The 1985-86 oil price slump arose from a supply shock as OPEC reverted to its production target of 30 mb/d in response to rising oil supply from the North Sea and Mexico and breaches of OPEC production agreements (Gately, Adelman, and Griffin 1986). The oil price plunge ushered in a period of weak growth and significant debt problems in some large EMDEs as well as slow growth in European countries, and, at the end of 1987, a significant downward correction in U.S. and global stock markets.
1990-91. While the oil price decline of 1990-91 satisfy the definition employed here, it differed from other oil price plunges in being a reversal of a previous oil price spike triggered by the first Gulf War. Despite monetary policy loosening, global growth slowed in 1992 before recovering modestly in 1993, as a recession in Europe ran its course, the recovery in the United States remained hesitant amid financial strains in the savings and loans sector, and Japan entered a period of prolonged stagnation.

1998. The 1997 Asian financial crisis, set against a backdrop of a continued expansion of OPEC production until mid-1998, was accompanied by weakening oil demand and a sharp decline in oil prices (Fattouh 2007). Despite low oil prices, the global recovery remained tepid for most of 1998, partly as a result of the failure of a large asset management fund in the United States and financial stress in major emerging markets.

2001. The disruptions and uncertainty caused by the September 11 terrorist attacks in the United States intensified a growth slowdown already underway as the “dotcom” bubble deflated. Softening global activity and rising uncertainty triggered a sharp decline in oil prices. However, aggressive monetary policy easing by the Federal Reserve and other major central banks supported a rapid rebound in activity.

2008-09. A severe recession following the global financial crisis sent all commodity prices tumbling. The recovery from the global recession was sluggish as many countries faced a wide variety of legacy challenges and global potential growth slowed (Kilic, Kose, and Ohnsorge 2020; Kose and Ohnsorge 2019). However, starting in 2009, strong demand for oil and other commodities from China propelled a rebound in their prices.

2014-16. Between mid-2014 and early 2015, oil prices fell by more than 50 percent and then continued to fall until their trough in early 2016. The decline was triggered by a combination of surging U.S. shale oil production, receding geopolitical risks involving some key producers, shifts in policies by OPEC, and weakening global growth prospects (Baffes et al. 2015; Baumeister and Kilian 2016b; World Bank 2018a). Supply factors accounted for about two-thirds of the oil price decline (Figure 4.2; Baffes et al. 2015b). It was accompanied by a period of slowing global potential growth (World Bank 2018c; 2019b).

ANNEX 4.3 Methodology: Impact of oil price plunges on output

Methodology. The responses of real output, investment, consumption, and productivity growth—denoted by y—following oil price collapses are estimated using the local projections model of Jordà (2005). The model is given by

\[y_{t+h,j} = \alpha_{(h),j} + \beta_{(h)} E_{t,j} + \sum_{s=1}^{p} \sum_{l=1}^{q} \gamma_{(h)} X_{t-s,j}^{l} + \sum_{s=1}^{p} \delta_{(h),l} y_{t-s,j} + u_{(h),j} \]

where \(h = 0, \ldots, 5 \) is the forecast horizon, \(\alpha_{(h),j} \) is country \(j \) fixed effects, and \(u_{(h),j} \) is an error term. The coefficient of interest \(\beta_{(h)} \) captures the dynamic multiplier effect (impulse response) of the dependent variable with respect to the event dummy variable \(E_{t,j} \). \(X_{t,s}^{l} \) represents a set of control variables with coefficients \(\gamma_{(h)} \). The specification controls for lagged dependent variables \(y_{t-s,j} \). The number of lags for each variable is denoted by \(p \) and varies from 1 to 3 for the estimation. While the supply shock is represented by a univariate model, the demand shock controls for lagged output and investment as critical macroeconomic determinants. Driscoll and Kraay (1998) standard errors are used to address cross-sectional and serial correlation. The model is estimated separately for all EMDEs, for energy-exporting EMDEs, and for other EMDEs, and for subgroups of EMDEs with fixed and floating exchange rates and with high and low government debt.

Definitions. Oil price collapses are defined as years in which oil prices fell by 30 percent or more

15 Other estimates put the share of supply factors at just under half (Baumeister and Hamilton 2019).

Data. Using annual data, the sample includes 155 EMDEs for 1970-2018. This includes 36 EMDEs that are energy exporting (oil, gas, or coal), defined as in Table 1.2 (Chapter 1) and 120 other EMDEs. Data on output, investment, consumption, and productivity are available from the World Bank’s *World Development Indicators*. The exchange rate classification follows the IMF’s *Annual Report on Exchange Arrangements and Restrictions*. High (low) public debt is above (below) 70 percent of GDP for high-income EMDEs and 30 percent of GDP for upper-middle-income, lower-middle-income, and low-income EMDEs.

References

Cashin, P., Mohaddes, K., Raissi, M., & Raissi, M. 2014. “The Differential Effects of Oil Demand and

IMF (International Monetary Fund). 2017a. Fiscal

